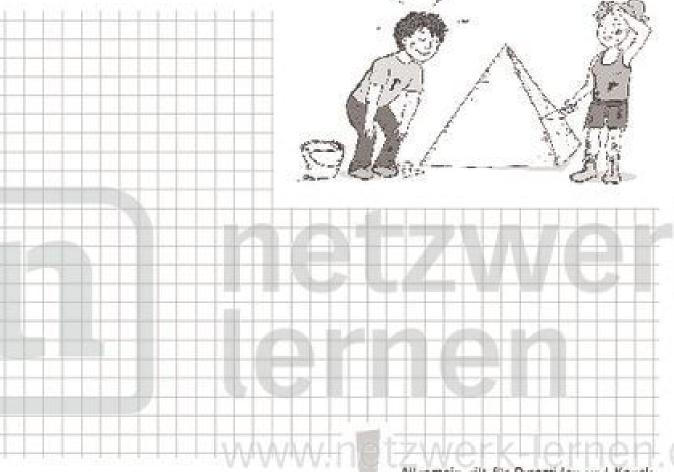
| Zeile | Aufgabe ①                                                                        |
|-------|----------------------------------------------------------------------------------|
| 1     | Der Schulhof von Jules Schule wird umgestaltet.                                  |
| 2     | Auch die Schüler dürfen Vorschläge machen.                                       |
| 3     | Jules Klasse will, dass "Kunstwerke" aus Beton aufgestellt werden.               |
| 4     | Jule entwirft am Computer eine quadratische Pyramide.                            |
| 5     | Die soll 3 m hoch werden und eine untere Kantenlänge von 1 ½ m haben.            |
| 6     | Manu schaut ihr zu und meint: "Da brauchen wir aber eine Menge Beton."           |
| 7     | "Gut, dann machen wir sie nur halb so hoch, oder halb so breit", lenkt Jule ein. |
| 8     | Manu hat eine andere Idee: "Machen wir sie doch innen hohl                       |
| 9     | und sparen eine Pyramide aus, die 2,50 m hoch und unten 90 cm breit ist."        |
| 10    | "Lass uns doch mal ausrechnen, wie viel Beton                                    |
| 11    | bei den verschiedenen Möglichkeiten gebraucht wird", schlägt Jule vor.           |

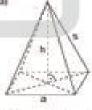




Allgemein gilt für Pyramiden und Kegel: Volumen = 3 - Grundfläche - Höhe,

## Lösungsseite

- (siehe Zeile 10 und 11 der Aufgabe) Frage?
- Frage: Wie viel Beton wird bei den verschiedenen Möglichkeiten gebraucht?
  - a) jules 1. Vorschlag (siehe Zeile 4 und 5)
  - b) Jules 2. Vurschlag (siehe Zeile 7)
  - c) Jules 3. Vorschlag (siehe Zeile 7)
  - d) Manus Vorschlag (siehe Zeile 8 und 9)
- Unterstreiche wichtige Angaben in der Aufgabe und fertige Skizzen an! 0
- So könnten die Skizzen aussehen:









- a)  $V_1 = \frac{1}{2}A_1 \cdot h = \frac{1}{2} \cdot 1\frac{1}{2}m \cdot 1\frac{1}{2}m \cdot 3m = \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot 3m \cdot = \frac{6}{2}m \cdot = 2\frac{1}{2}m \cdot = 2,25m^2$ 0
- b) Die Pyramide wird halb so hoch: 0 Hier kannst du das Volumen mit den halben Höhe berechnen oder überlegen, wie sich das Volumen ändert, wenn du die Höhe halbierst.
- 0 Wenn die Höhe halbiert wird, wird auch das Volumen halbiert, denn beide sind proportional. Also gilt:  $V_1 = \frac{1}{2} V_2 = \frac{1}{2} \cdot 2,25 \text{ m}^2 = 1,125 \text{ m}^2 - 1,13 \text{ m}^3$
- 0 c) Die Pyramide wird halb so breit:

Hier kannst du das Volumen mit der halben Seitenlänge des Quadrates berechnen oder überlegen, wie sich das Volumen ändert, wenn du die Seite halbierst.

- 0 Wenn die Seitenlänge des Quadrates halbiert wird, engibt sich für das Volumen der a. Tell, denn in der Formel für das Volumen wird die Seitenlänge mit sich selbst multipliziert: Das heißt bei einer Seitenlänge von a: 1, a - 1, a = 1 a' Also gilt: V, = 1 V, = 1 · 2,25 m' = 0,5625 m' - 0,56 m'
- 0 d) Die Pyramide wird hahl.
- und zwar fehlt innen eine kleinere Pyramide (Höhe 2,50 m, Breite 90 cm). (II)
- Diese kleinere Pyramide hat das Volumen 0  $V_{i} = 1 \text{ A} \cdot \text{h} = \frac{1}{4} \cdot \text{o,g m} \cdot \text{o,g m} \cdot 2,50 \text{ m} = 0,675 \text{ m}$
- (6) Von dem Volumen V wird das Volumen V der ausgesparten Pyramide subtrahiert.
- 0 V, = V, - V, = 2,25 m' - 0,675 m' = 1,575 m' - 1,58 m'
- Antwort: Ungefähr so viel Beton wird jeweils gebraucht:



netzwer e • Bestellnummer: 28119-7

a) 2,25 m², b) 1,13 m², c) 0,56 m², d) 1,5