INHALTSVERZEICHNIS

Didaktische, methodische und praktische Hinweise Seite 4
Didaktisch-methodische Hinweise zu den Einzelstationen Seite 8
Laufzettel zum Stationenlernen Seite 13
Stationen-Namenübersicht • Erfolgsliste für die Lerngruppe Seite 14
Parcours 1:
Sandkasten und Wasserspiele Seite 15
Parcours 2:
Sechslinge und ein Würfel Seite 33
Parcours 3:
Aus drei mal zwei mach eins Seite 39
Parcours 4:Aus drei mach einsSeite 46
Parcours 5:
TauchstationSeite 50
Parcours 6A:
Durch Schachteln zur Klarheit Seite 55
Parcours 6B:
Noch allgemeiner schachtelnSeite65
Parcours 7A:
Und jetzt auch noch Stufen mittendrin Seite 75
Parcours 7B:
Stufen mittendrin und das noch allgemein Seite 83
Parcours 8:
Ein Puzzle - von oben und unten einkreisen Seite 91
Parcours 9:Ein paar interessante Probleme im TextSeite 101
Parcours 10:
Beziehungskiste: Der Körper und seine Formel Seite 110

Didaktische, methodische und praktische Hinweise

Allgemeine Vorbemerkungen

Dieses Stationenlernen wendet sich an Lehrer und Lehrerinnen aller Schulformen! Das Stationenlernen hat sich im Laufe der Jahre an allen Schulformen einen festen Platz erobert. Den vielen Vorteilen, wie z. B.

- selbstständiges Arbeiten
- eigenverantwortliches Lernen
- soziales Lernen mit Partnern
- individuelles Lerntempo
- Methodenvielfalt
- Motivation
- und Ähnliches
stehen natürlich auch gewisse Nachteile entgegen, wie z. B.
- Zeitaufwand zur Herstellung der Stationen
- Organisation
- Materialbeschaffung
- Bewertung
- und einiges mehr.

Das positiv gemeinte Argument, die Lernenden könnten sich den innen angemessenen Schwierigkeitsgrad selbst aussuchen, kann einer ernsthaften Prüfung nicht standhalten. Denn ehe die Lernenden den Schwierigkeitsgrad der innen unbekannten Station erkannt haben, müssen sie einen großen Teil der Station schon durchgearbeitet haben. Das kann zu Frustration, aber auch Überheblichkeit gegenüber anderen Stationen führen. Insofern ist es sicher sinnvoller, die Anzahl der Stationen in zwei oder drei Schwierigkeitsklassen einzuteilen und eventuell dann die Lernenden vorsichtig in der Wahl ihrer Stationen zu beraten.
Das vorliegende Stationenlernen möchte die methodische Vielfalt der »Beweise« nutzen, um möglichst viele verschiedene Schwierigkeitsgrade auf möglichst vielen Lernniveaus für möglichst viele Schulformen anzubieten. Es geht also weniger um die Kenntnis einer Formel und deren Anwendung - das natürlich auch - als um die Art der Herleitung dieser Formel und die in diesen Herleitungen versteckten Probleme.
Da wir es in einer Lerngruppe mit z. T. sehr unterschiedlichen Stadien der Lernentwicklung zu tun haben, bieten die unterschiedlichen Ebenen der Lernmethoden in diesem Stationenlernen eine gute Möglichkeit, den vorgefundenen Entwicklungsstadien der Lernenden und deren spezifischen Eigenarten Rechnung zu tragen.

Zusammenfassende Bemerkungen zu den Stationen

Die Stationen können methodisch im Wesentlichen in drei Gruppen eingeteilt werden:

1. Experimentelle Methoden (Stationen 1, 5 und auch 8)
2. Approximationsmethoden (Stationen 6A, 6B, 7A, 7B und auch 8)
3. Kompositionsmethoden (Stationen 2, 3, 4, 8)

Die experimentellen Methoden basieren auf dem Messen von Massen und Volumina der Prismen und zugehörigen Pyramiden. Dabei werden Hohlkörper gefüllt bzw. Vollkörper untergetaucht.
Die Approximationsmethoden benutzen Stufenpyramiden in verschiedenen Formen, einmal ein- und umbeschriebene Stufenpyramiden, zum anderen eine einzige Stufenpyramide, die

Die Kompositionsmethoden sind Spezialfälle, bei denen die Prismen aus verschiedenen Pyramiden unterschiedlicher Anzahl zusammengesetzt sind. Aus der Größe, Art und Anzahl der Pyramiden kann man dann Schlüsse auf das Volumen der speziellen Pyramiden ziehen. Da entsprechende Netze an die Stationen angehängt sind, lassen sich die Modelle herstellen. Sollten den Lernenden aus irgendwelchen Gründen keine Modelle zur Verfügung stehen, können auch die Schnittzeichnungen allein benutzt werden, um die entsprechenden Erkenntnisse zu gewinnen. Dieser Prozess stellt dann allerdings sehr hohe Anforderungen an das Raumvorstellungsvermögen der Kinder.

Einige Bemerkungen zum Begriff »Beweis«

Wir möchten diesen Begriff tunlichst vermeiden, weil er zu schillernd und auch durch die universitäre Ausbildung vorbelastet ist. Ein paar Bemerkungen müssen aber erlaubt sein. Der Beweisbegriff erhält erst durch die Erkenntnisse der Entwicklungspsychologie und der Lerntheorie einen angemessenen Platz im schulischen Lernen. Er ist deshalb ein sehr relativer Begriff. Für Kinder der Klassen 5 sind z. B. Zählen und Messen selbstverständliche Beweismethoden, für Lernende der 7. Klassen sind Konstruktionsmethoden beweisfähig, aller technischen Ungenauigkeiten zum Trotz, aber in Klasse 12 kann man sich mit den o. g. Methoden natürlich nicht zufrieden geben, weil diese Schülerinnen und Schüler einen Entwicklungsstand erreicht haben, der sie zu allgemeinerem und abstrakterem Denken befähigt. Die Textaufgaben in Station 9 wurden auf wenige - unserer Meinung nach - interessante Inhalte beschränkt.
Die Station 10, die Zuordnungen zwischen speziellen Spitzkörpern und deren entsprechenden Volumenberechnungsformeln behandelt, erfordert einiges an mathematischen Fähigkeiten und Fertigkeiten und ein hohes Maß an Konzentration.
Die Hilfen, die in den einzelnen Stationen zur Verfügung gestellt werden, sollten nicht als unabänderlich hingenommen werden. Je nach Leistungsfähigkeit sollte man den Lernenden die eine oder andere Hilfe versagen, aber auch umgekehrt auf weitere mögliche Hilfen durch die Lehrerinnen und Lehrer verweisen, die z. B. in zusätzlichen mündlichen Informationen bestehen. Es können auch »Experten« eingesetzt werden, Schülerinnen bzw. Schüler, die ihre besonderen Fähigkeiten bei Problemen an den Stationen einbringen. Ebenso können mathematische Schülerlexika zur Verfügung gestellt werden, deren Gebrauch aber vorher geübt werden muss.
Ehe man mit dem Stationenlernen beginnt, ist es ratsam, eine Reihe von Begriffen und Inhalten zu wiederholen. Dazu gehören:

- Der Satz des Pythagoras, auch in den Mehrfachanwendungen
- Äquivalenzumformungen
- Prismenformen
- Proportionalität
- Summation und Ausklammern von Termen
- Dreieckslehre
- evtl. Kreisfläche
- usw.

Bei der Einführung des Themas sollte als zentrales Problem bei der Volumenberechnung klar herausgestellt werden, dass diese deshalb mit den bisherigen Mitteln nicht durchgeführt werden kann, weil die Seitenflächen nicht senkrecht auf der Grundfläche stehen, zumindest nicht alle,

Didaktisch-methodische Hinweise zu den Einzelstationen

Parcours 1:

Sandkasten- und Wasserspiele

Die Station 1 ist einfach durchzuführen, hat aber trotzdem wegen der Vielfalt der Modelle und der Verschiedenheit der beiden Methoden - Beispiel <-> Gegenbeispiel - einen starken Überzeugungscharakter. Der Wechsel von Denk- und Handlungsebenen in einem selbst durchgeführten Experiment verstärkt die Gewissheit über die eigenen Erkenntnisse. Diese werden durch die Bildhaftigkeit der Tabelle und die Übersichtlichkeit der Ergebnisse auf der ikonischen Ebene gestützt.
Zu dieser Station gehören 7 Modellpaare. Die große Anzahl von Modellkörpern
soll gewährleisten, dass die Schüler einsehen können, dass die auf breiter Erkenntnisebene gefundenen Vermutungen und Ergebnisse wahrscheinlich allgemeiner gelten, als wenn sie nur bei einem Körperpaar zustande gekommen wären. Die Ergebnisse werden nicht nur durch die verschiedenen Formen, d. h. verschiedene Grundflächen und Höhen, sondern auch durch das Beispiel einer schiefen Pyramide gesichert.
Die beiden Gegenbeispiele, gleiche Grundflächen und verschiedene Höhen bzw. verschiedene Grundflächen und gleiche Höhen, stützen die Schülervermutungen noch auf ganz andere Weise. Da Gegenbeispiele im Mathematikunterricht im Allgemeinen keine so große Rolle spielen, ergibt sich hier für den Lernenden ein weiteres methodisches Mittel, das man im Unterricht aufgreifen sollte.
Um die Vielzahl der Formen und Ergebnisse übersichtlich zu gestalten, ist eine vorgefertigte Tabelle von großem Nutzen, dient dem schnelleren Überblick und entlastet die Lernenden. Um Verwechselungen bei so vielen Körpern zu vermeiden, ist es unbedingt notwendig, die zusammengehörigen Modellpaare mit gleichen Nummern zu versehen.
So sinnvoll auch die Vielzahl der verschiedenen Modelle sein mag, so sollte man auf der anderen Seite nicht übersehen, dass eine scheinbar so gesicherte Erkenntnis über den Zusammenhang der Volumina von Prismen und entsprechenden Spitzkörpern unter Umständen dazu führen kann, dass die Motivation der Lernenden, weitere Stationen zu bearbeiten, nicht verstärkt wird.

Die Gegenbeispiele sind die Körperpaare 4 und 7 .

Parcours 2:

Sechslinge und ein Würfel

Da ein »allgemeiner« Beweis über die Formel zum Volumen eines Spitzkörpers nicht durchgeführt werden kann, irgendwelche Voraussetzungen müssen ja immer gegeben sein, bleibt in der Regel nur die Benutzung von Spezialfällen übrig, auf deren Grundlage man dann weiter sieht. Das sollten die Lernenden immer vor Augen haben!
Diese Station 2 benutzt nun einen ganz besonderen Spezialfall. Für die Lernenden mag die hier angeführte Begründung etwas »anfällig« sein, da man vom ganzen Würfel auf den halben übergeht, um die Argumentation zu Ende führen zu können. Es bleiben am Ende nur drei Pyramiden für die Herleitung der Volumenformel übrig. Das hat aber mit der Schlüssigkeit der Begründung nichts zu tun.

Laufzettel zum Stationenlernen Mein Name:
 \qquad

Wenn du eine Station bearbeitet hast, so hake sie auf diesem Zettel ab. Dann gehst du zu deiner Lehrerin oder deinem Lehrer und informierst sie/ihn über deinen Erfolg, damit er die Übersicht behält. Wahrscheinlich bekommst du auf der Gesamtübersicht eine Markierung.

Stationsnummer	Name der Station
1	Sandkasten- und Wasserspiele
2	Sechslinge und ein Würfel
3	Aus drei mal zWei mach eins
4	Aus drei mach eins
5	Tauchstation
6 6	Durch Schachteln zur Klarheit
$6 B$	Noch allgemeiner schachteln
$7 A$	Und Jetzt auch noch Stufen mittendrin
$7 B$	Stufen mittendrin und das noch allgemein
8	Ein Puzzle - von oben und unten einkreisen
9	Ein paar interessante Probleme im Text
10	Beziehungskiste: Der Körper und seine Formel

Stationen-Namenübersicht Erfolgsliste für die Lerngruppe

Stationsnummer	1	2	3	4	5	$6 A$	$6 B$	$7 A$	$7 B$	8	9	10

PARCOURS 1: Sandkasten und Wasserspiele

Bestimmung der Formel zur Berechnung des Volumens von verschiedenen Pyramiden durch Vergleich der Schüttinhalte mit ihren entsprechenden Prismen.

I. Beschreibung:

Nach dieser Station wirst du in der Lage sein, die Formel für das Volumen einer Pyramide aufzustellen, indem du den Inhalt der beiden offenen Körper, Pyramide und entsprechende Säule, durch Schüttversuche vergleichst.

II. Materialliste:

- 7 Paare von Pyramiden bzw. Kegeln und Säulen, paarweise nummeriert
- Messzylinder
- Sand oder Wasser
- vorgefertigte Tabelle

III. Arbeitsschritte für Sand:

1. Bei der Bestimmung der Formel für das Pyramidenvolumen geht man meistens so vor, dass man das Volumen der Pyramide mit dem eines Prismas (Säule) vergleicht, wobei Grundfläche G und Höhe h beider Körper übereinstimmen. Wie du siehst, ist das Volumen der Pyramide erheblich kleiner als das des Prismas. Das Pyramidenvolumen muss also mehrmals in das des Prismas hineinpassen! Dämmert dir etwas? Dann führe deine Idee aus!
(1. Hiffe?)

Wenn du den Versuch ausgeführt hast, ist jetzt völlig klar, dass das Volumen einer quadratischen Pyramide mit der folgenden Formel beschrieben werden kann:

$$
\begin{aligned}
& \mathbf{V}_{\text {quadratische Pyramide }}=-\bullet \mathbf{V}_{\text {quadratisches Prisma }} \quad \text { mit } \mathrm{G} \text { und } \mathrm{h} \\
& \mathbf{V}_{\text {quadratische Pyramide }}=-\cdot \mathbf{G} \cdot \mathbf{h} \quad \text { (Pyramidenvolumen) }
\end{aligned}
$$

Du schreibst am besten die Formel in einem Merksatz auf.

Merksatz: Man berechnet das Volumen einer quadratischen Pyramide, indem man das \qquad mit \qquad
\qquad multipliziert.

Nachsatz: Die quadratische Pyramide ist eine sehr spezielle
Pyramide. Es gibt Millionen anderer Pyramiden. Du kannst also diese Formel nicht ohne weiteres auf andere Pyramidenformen übertragen.

Versuche deshalb, die anderen Körperpaare auf ihr Volumenverhältnis zu überprüfen. Gehe dabei genau so vor, wie bei dem Körperpaar Nr. 1.

PARCOURS I

III. Arbeitsschritte für Sand (Fortsetzung):

Wenn du alle Volumenverhältnisse verglichen hast, wird dir etwas auffallen. Fasse deine Erkenntnisse in einem Satz zusammen:

Bei den Körperpaaren mit den Nummern \qquad ist das
Volumenverhältnis von Pyramide zu Prisma gleich \qquad , bei den Körperpaaren mit den Nummern \qquad ist es ganz \qquad .

Wenn du dir die Körperpaare anschaust, bei denen das Volumenverältnis anders ist, so wirst du schnell feststellen, woran das liegt. Ich denke, dass du das schon vorher durchschaut hast.
Fasse jetzt deine Erkenntnisse zusammen:
Nur bei Pyramiden und Prismen, bei denen \qquad und \qquad _
$\overline{\text { entsprechendem Prisma gleich }}$, ist das Verhältnis der Volumina von Pyramide und entsprechendem Prisma gleich \qquad .
(5. Hilfe?)

Der Verdacht, den du schon bei dem Körperpaar mit der Nummer 1 hattest, ist also bestätigt worden.

Merksatz: Das Volumen der Pyramiden bzw. des Kegels 1, 2, 3, 5 und 6 ist

$$
\mathbf{V}_{\text {Pyramide }}=-\bullet \mathbf{G} \cdot \mathbf{h}
$$

(Formel für das Pyramidenvolumen)

(IV.) Arbeitsschritte für Wasser:

Die Körperpaare, die du benutzen kannst, sind für Wasser geeignet. Sie weichen nicht auf. Lies dir die Arbeitsschritte für Sand durch und gehe genau so vor, wie es dort beschrieben ist. Auch die Hilfen sind die gleichen.

PARCOURS 1

Paar 1

Mantel einer Pyramide mit quadratischer Grundfläche

PARCOURS I

Wenn man mit Wasser arbeitet, empfiehlt es sich, das Netz der Säule einseitig zu laminieren.

Paar 1
 Netz einer quadratischen Säule ohne Deckfläche

PARCOURS 7A (Fortsetzung Hilfen):

$$
\frac{V_{\text {Sutenp }}}{V_{\text {quadr. Saule }}}=\frac{1330 \mathrm{~cm}^{3}}{4000 \mathrm{~cm}^{3}}=0,3325 \quad \text { (ohne Einheit!!) }
$$

Das Volumen der Stufenpyramide passt genau dreimal in das Volumen der »entsprechenden« Säule mit gleicher Grundfläche und Höhe hinein. Umgekehrt ist das Volumen der quadratischen Stufenpyramide nur ein Drittel mal so groß wie das der »entsprechenden« quadratischen Säule.

$$
\begin{aligned}
& \mathbf{V}_{\text {quadr. Pyramide }}=\frac{1}{3} \cdot \mathbf{V}_{\text {quadr. Säule }} \\
& \mathbf{V}_{\text {quadr. Pyramide }}=\frac{1}{3} \cdot \mathbf{G} \cdot \mathrm{~h}
\end{aligned}
$$

Man berechnet das Volumen einer quadratischen Pyramide, indem man zuerst das Volumen der entsprechenden quadratischen Säule ausrechnet und dieses Volumen

PARCOURS 7A Abbildung 1

PARCOURS 7A

Vorlage auf Folie kopieren und gegebenenfalls farbig anlegen

Abbildung 2

Grundseite: $a=20 \mathrm{~cm}$
Höhe:
$h=10 \mathrm{~cm}$

PARCOURS 7B:
 Stufen mittendrin und das noch allgemein

Näherungsverfahren
Herleitung der Formel für die Berechnung des Pyramidenvolumens einer quadratischen Pyramide auf allgemeinere Weise über eine Stufenpyramide, die die eigentliche Pyramide »durchdringt«.

I. Beschreibung:

An dieser Station erarbeitest du die Formel für die Berechnung des Pyramidenvolumens einer quadratischen Pyramide, indem du eine Stufenpyramide benutzt. Die Seitenflächen der Pyramide schneiden dabei aber die Stufen der Stufenpyramide. Du wirst dich über die Berechnung des Volumens der Stufenpyramide dem Volumen der Pyramide annähern und dabei eine Formel finden.

Suche dir einen Partner!

II. Materialliste:

- Blatt 1 (räumliche Abbildung von Pyramide und Stufenpyramide)
- Blatt 2 (senkrechter Schnitt durch die Mitte von Pyramide und Stufenpyramide)
- Abbildung/Blatt 3 (Detailzeichnung, Verfeinerung einer Stufe der Pyramide, s. S. 82)

III. Arbeitsschritte:

Bisher hattest du es bei der Volumenberechnung von Körpern nur mit solchen zu tun, bei denen in der Regel die Seitenwände, also der Mantel, senkrecht auf der Grundfläche standen.
Bei den Pyramiden stehen jedoch die Seitenflächen nicht senkrecht auf der Grundfläche, zumindest nicht alle gleichzeitig. Das ist das eigentlich Neue! Man nennt diese Körper auch Spitzkörper.
Nimm zuerst beide Abbildungen (Blatt 1 und Blatt 2) und schaue sie dir genau an. Dabei wirst du bemerken, dass zwar die Höhen beider Pyramiden \qquad sind, aber die Grundflächen beider Pyramiden sind \qquad . Das wird aber kein wesentliches Hindernis bei der Herleitung der Formel für dich sein. Im Übrigen ist die Methode von Parcours 7B fast die gleiche wie von 7A.

Achtung!

Sicher bist du gleich auf die Idee gekommen, die überstehenden Teile der Stufenpyramide abzuschneiden und diese dann in die »Löcher« in der Pyramide einzupassen. Selbst wenn du handwerklich sehr geschickt bist, wirst du große Mühe haben, das auszuprobieren. Natürlich möchte ich dich nicht von diesem Experiment abhalten, denn es wird dir verschiedene Einsichten bringen. Ob alle abgeschnittenen Teile der Stufenpyramide in die Löcher passen oder etwas übrig bleibt, sollst du am Ende der Station erfahren. Du kannst ja schon mal wetten.
Für das Problem der Volumenberechnung sind dir bestimmt schon ein paar Ideen gekommen. Versuche diese Ideen in einen Plan zu bringen, in welchem du die einzelnen Lösungsschritte in der richtigen Reihenfolge aufschreibst. Nimm dir dazu Zeit und schaue nicht auf die weiteren Schritte, die in dieser Station gleich folgen werden. Solltest du oder dein Partner nicht richtig vorwärtskommen, dann nehmt

PARCOURS 9:

Ein paar interessante Probleme im Text

Aufgabe 7:

Die Kristalle von Quarz, eine Art von Sand, haben die Form einer regelmäßigen sechseckigen Säule mit je zwei an den Enden angesetzten Pyramiden. Quarzkristalle können unterschiedliche Größen haben. Je langsamer eine Glasschmelze abgekühlt wird, umso größer können die Kristalle werden. Das gilt auch für eine Zuckerlösung. Manche Kristalle (Bergkristalle) können sehr groß werden, mehr als $0,5 \mathrm{~m}$ Länge.

Maße: Seitenlänge des regelmäßigen Sechsecks: $a=4,05 \mathrm{~cm}$
 (Querschnitt der Säule)

Quarzkristalle

$$
\text { Höhe des sechseckigen Prismas: } s=6,5 \mathrm{~cm}
$$

Höhe der Pyramiden: $\quad h=4,55 \mathrm{~cm}$
a) Wie groß ist das Volumen dieses Kristalls?
b) Was wiegt dieser Riesenkristall, wenn die Dichte von Quarz $\gamma=2,6 \mathrm{~g} / \mathrm{cm}^{3}$ beträgt?

Aufgabe 8:

Flüssigkeitsthermometer können Temperaturen bis ca. $300^{\circ} \mathrm{C}$ messen. Quecksilber siedet z. B. bei $357^{\circ} \mathrm{C}$. Wie misst man aber Temperaturen von mehr als $1000^{\circ} \mathrm{C}$?

Schmelztemperatur einiger Metalle: Platin: $1771^{\circ} \mathrm{C}$ Hafnium: $2227^{\circ} \mathrm{C}$ Wolfram: $3370^{\circ} \mathrm{C}$
Dir wird aufgefallen sein, dass die Schmelztemperaturen auf $1^{\circ} \mathrm{C}$ genau angegeben sind, das ist tatsächlich so! Wenn du einen hängenden Draht mit einem Bunsenbrenner durchschmilzt, dann dehnt sich der Draht nicht erst, sondern er reißt bei Erreichen der Schmelztemperatur schlagartig durch. Diese Eigenart der meisten Metalle macht man sich bei den sogenannten Schmelzpyramiden bzw. -kegeln zu Nutze. Erreicht nämlich die Umgebungstemperatur eines Schmelzkegels seinen Schmelzpunkt, so fällt der Kegel augenblicklich in sich zusammen. Das kann man beobachten. Man benutzt ganze Batterien solcher Kegel mit aufsteigenden Schmelzpunkten. Diese Kegel bzw. Pyramiden sind natürlich nicht groß. Ein Schmelzkegel aus Osmium, Schmelzpunkt $2700^{\circ} \mathrm{C}$, hat folgende Maße:

$$
\begin{aligned}
& \text { Kegelhöhe: } h=4,2 \mathrm{~cm} \\
& \text { Radius: } \quad r=0,9 \mathrm{~cm}
\end{aligned}
$$

a) Welches Gewicht hat dieser Kegel, wenn die Dichte von Osmium $\gamma=22,48 \mathrm{~g} / \mathrm{cm}^{3}$ beträgt. Diese Dichte ist größer als die von Gold oder Platin!
b) Welche Kantenlänge hätte eine quadratische Schmelzpyramide gleicher Höhe und gleichem Gewicht?

Aufgabe 9:

Viele Holzarten sind selten geworden, da die Bäume wegen ihres Wertes radikal abgeholzt wurden und noch werden, besonders in den Tropen. Dies gilt auch für Ebenholz, das fast schwarz ist. »Schwarz wie Ebenholz« ist ein geflügeltes Wort in der deutschen Sprache. Vielleicht hast du es schon einmal gehört. Aus diesem Holz werden auch Dekorationsstücke gemacht, sehr teuer! Ebenholz ist auch mit die schwerste Holzart.

Maße: Kantenlänge des Tetraeders: $a=1,5 \mathrm{dm}$ Dichte von Ebenholz: $\gamma=1,3 \mathrm{~kg} / \mathrm{dm}^{3}$

