Computer im Mathematikunterricht

Funktionsuntersuchungen mit Dynamischer Geometrie-Software

Ein Beitrag von Jens Mittag

D iBrave/iStock / Getty Images Plus/Getty Images

GeoGebra ist ein digitales Werkzeug für den modernen Mathematikunterricht. Die Schieberegler in diesem Programm bieten eine anschauliche Möglichkeit, den Einfluss von Parametern auf Funktionen zu untersuchen. Bringen Sie Ihren Schülerinnen und Schülern bei, mit den Schiebereglern zu arbeiten. Sie lernen so ein Werkzeug kennen, um Mathematik anschaulich zu machen und zu verstehen.

KOMPETENZPROFIL

Klassenstufe/Lernjahr:	9–11			
Dauer:	7 Unterrichtsstunden			
Kompetenzen:	Mathematisch modellieren, mit symbolischen, formalen und			
	technischen Elementen der Mathematik umgehen			
Thematische Bereiche:	Quadratische Funktionen, Sinusfunktion, Einführung in die			
	Ableitung			
Medien:	GeoGebra-Dateien			

zur Vollversion

Auf einen Blick

Ab = Arbeitsblatt

1.-5. Stunde – Materialien ab Klasse 9

Thema:	Quadratische Funktionen und trigonometrische Funktionen
M1 (Ab) Quadratische Funktionen in Scheitelpunktform
M 2 (Ab	Quadratische Funktionen in Normalform
M 3 (Ab) Einen Graphen verschieben
M4 (Ab) Die Sinusfunktion
M 5 (Ab) Schwingungen überlagern

6./7. Stunde – Materialien ab Klasse 10

Thema:	Differenzialrechnung
M 6 (Ab)	Von der Sekante zur Tangente
M7 (Ab)	Die Tangente verfolgen

Minimalplan

Die Materialien sind unabhängig voneinander einsetzbar. Wählen Sie sie je nach Übungsschwerpunkt, Wiederholungsbedarf und zur Verfügung stehender Zeit aus.

Quadratische Funktionen in Scheitelpunktform

Aufgabe 1: Schieberegler richtig einstellen

Leg eine neue GeoGebra-Datei an. Füge drei Schieberegler mit den Namen a, b und c ein. Wähle jeweils das Intervall von –5 bis +5 und stelle für alle Schieberegler die Schrittweite 1 ein.

Lass dir das Grafikfenster anzeigen und justiere es auf Standard-Ansicht. Gib nun die Funktionsvorschrift $f(x):=a(x-b)^2+c$ in GeoGebra ein und betrachte den zugehörigen Graphen. Stelle die Schieberegler so ein, dass der Graph jeweils den gegebenen Scheitelpunkt SP hat und durch den gegebenen Punkt A verläuft.

Notiere jeweils die Werte der drei Schieberegler.

a)	SP (1; –3), A (–1; 5)	b)	SP (-2; -1), A (-4; 3)
c)	SP (0; 1), A (1; 3)	d)	SP (1; 3), A (2; 2)
e)	SP (2; 0), A (1; -3)	f)	SP (-4; -2), A (-2; 2)
g)	SP (3; 0), A (1; -4)	h)	SP (0; 0), A (2, 4)

Aufgabe 2: Partnerarbeit

© RAABE 2020

Betrachte die folgende Abbildung. Dort siehst du sechs Parabeln in einem Diagramm. Der Schieberegler a steht entweder auf 1 oder auf –1.

Gib deinem Partner nacheinander **an**, wie er die Schieberegler a, b und c einstellen muss, um genau diese Graphen zu erzeugen. **Vergleiche** mit dem Ergebnis in GeoGebra bei deinem Partner und notiere zu jedem Graphen in der Abbildung die Funktionsgleichung.

Aufgabe 3: Zeichne mit der Hand!

Skizziere in einem Koordinatensystem die Graphen folgender Funktionen.

a) $f(x):=-(x-2)^2+1$	b) $f(x):=-(x+3)^2+2$
d) $f(x):=x^{2}$	e) $f(x):=-(x+1)^2$

c)
$$f(x):=(x-1)^2-1$$

f) $f(x):=x^2+3$

