Lehrerzeugnis

Hier ist für den Platzhalter reserviert
Platzhalter gefragt
Was - zum Donner - sind Terme?
Terme - wofür sind sie gut?

Du löst Gleichungen mit Klammern

Eine Klammer mehr oder weniger - was soll's?
Wir machen eigene Gleichungen zum Üben
Wir machen die Probe
Eine oder keine Lösung, unendlich viele Lösungen
Eine, keine, ganz, ganz viele?
Wir lösen Summenterme auf, jeder mit jedem
Es wird noch einmal geklammert
Und noch mehr klammern
Siamesische Zwillinge - Binome
Wir formen Binome
Gleichungen mit Binomen
Wir bringen auf den Hauptnenner
Wir lösen Gleichungen mit Brüchen
Achtung, Achtung - Minus in Sicht
Ein kleines Ausmalrätsel gefällig?
Auch mit Ungleichungen kommen wir klar
Mit Ungleichungen umgehen
Ein kleines Puzzle gefällig?
Mit Formvariablen in Form kommen
Wir schreiben Gleichungen mit Formvariablen
Wir lösen Gleichungen mit Formvariablen
Über Klammern und Ausklammern
Wozu braucht man das Ausklammern?
Auch in der Geometrie braucht man Gleichungen
Weitere Formeln zur Geometrie
Auch Körper brauchen Formeln
Auch Temperaturen brauchen Gleichungen
Volumen, Flächen, Ecken und Kanten
Bella Italia: Pro Cento
Wir rechnen mit Prozenten
Wir rechnen mit Zinsen
Bei Zinsen spielt die Zeit eine Rolle
Pronto, pronto, Geld auf's Konto
Wir wandeln in mathematische Sprache um
Auch Eierhändler müssen mit jedem Cent rechnen
Das Ganze noch einmal mit Wein und Kartoffeln
Und jetzt wird kräftig gemischt
Weiterer Mischmasch mit Wein und Tee
Auch mit Zinsen kann man mischen
Hier wird Alkohol gemischt
und zur Vollversion

Vorbemerkungen

Die Lern- und Übungskartei zum »Lösen von Gleichungen« ist eine Übungsserie zum Stoffgebiet der Gleichungen (Klasse 7/8 der Sekundarstufe I). Anhand des Waagemodells wird das Lösen von Gleichungen anschaulich dargestellt und vermittels vielfältiger Aufgaben eingeübt.
Rätsel dienen zur Vertiefung des Erlernten und erhalten die Motivation.
In dieser Übungsserie werden die elementaren Rechenregeln vorgestellt und Hilfen und Tricks für das Lösen von Gleichungen vorgestellt.
Die Aufgabenblätter sind durch eine Falzlinie unterteilt. Unterhalb dieses Falzes befinden sich die Lösungen der Aufgaben. Es empfiehlt sich daher, die Aufgabenblätter entlang der eingezeichneten Linie zu falzen und gegebenenfalls aneinander zu kleben bzw. zu laminieren. Je zwei DIN A4-Karten können zusammengestellt und kopiert werden.
Die Karten eignen sich auch gut für die Wochenplan- und Freiarbeit.

Viel Freude und Erfolg mit den Kopiervorlagen wünschen Ihnen
der Kohl-Verlag und Hans J. Schmidt

Übersicht der benutzten Begriffe

äquivalent

Binomische Formeln

Erweitern

Gleichnamig

Term

Gleichungen und Ungleichungen

Gleichwertige Terme

Ungleichung
Variable

Unbekannte

Natürliche Zahlen
Rationale Zahlen

Wird eine Gleichung (oder Ungleichung) in eine andere umgeformt und bleibt dabei die Lösungsmenge gleich, dann heißen die Gleichungen (oder Ungleichungen) äquivalent (lat.: gleichwertig).
sind allgemeingültige Gleichungen
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
$(a+b) \cdot(a-b)=a^{2}-b^{2}$
heißt, Zähler und Nenner einer Bruchzahl mit derselben Zahl zu multiplizieren.

Bruchzahlen heißen gleichnamig, wenn sie denselben Nenner besitzen.
Als Term bezeichnet man mathematische Ausdrücke, die sich zum Rechnen eignen. Terme können sein: Zahlen, Variablen oder Verknüpfungen von Zahlen und Variablen.

Bei Gleichungen und Ungleichungen stehen auf der rechten und linken Seite Terme.

Terme sind gleichwertig, wenn man beim Einsetzen von gleichen Zahlenwerten für die einzelnen Variablen gleiche Ergebnisse erhält.

Eine Ungleichung erkennt man an den Zeichen > oder < .
Als Variable (Platzhalter) werden in Termen oder Gleichungen meistens Kleinbuchstaben wie x, y oder z benutzt. Diese Variablen halten den Platz frei für Zahlen aus einer Grundmenge.

In Gleichungen bezeichnet man diese Platzhalter häufig auch als Unbekannte. Ersetzt man in Gleichungen oder Ungleichungen Zahlenwerte durch Variable (z. B. y = $2 x$ durch $y=a x$), dann heißt die neue Variable a Formvariable, x heißt Lösungsvariable.

Natürliche Zahlen sind Zahlen wie 1, 2, 3, 4, 5, ...
Rationale Zahlen sind Zahlen wie 0,$2 ; 1,6$ oder $\frac{1}{5}$, aber natürlich gehören auch Zahlen wie $-1 ;-3,7$; +4 oder 0,125 dazu.

Wie Zeugnisse aussehen, brauche ich dir nicht zu erklären. Sie sehen so ungefähr aus wie dieses besondere Zeugnis für Lehrer. Du siehst, dass überall dort, wo etwas eingetragen werden soll, ein Kästchen vorgesehen ist:

ZEUGNIS
für Lehrer
Name: \quad Schuljar:
Bewertet wird der Untericht in Kasse:
Betragen:
Ordnung:
Fleiß:
Wissen:
Aussehen:
Auftreten:
Humor:
Anstand:
Bemerkungen:
Gesamturteil:
Die Schüler/innen der Klasse:

Diese Kästchen halten den Platz frei für Zensuren wie 2, 3, 4, Namen wie Meier, Schulze, Schmidt oder Klassen wie 6a, 9c oder 10 MP . In der Mathematik braucht man auch Kästchen oder Zeichen, die den Platz freihalten für Namen oder Zahlen. Meistens verwendet man Buchstaben wie x, y, a, b und nennt diese Buchstaben Platzhalter oder Variable. Variable heißt veränderliche Größe. Warum veränderlich?
Nimm als Beispiel dieses Zeugnis. Genau wie deine Zeugnisse auch wird sich das Zeugnis für einen Lehrer von Jahr zu Jahr ändern,
es sei denn, er erbringt immer konstante Leistungen, was sehr unwahrscheinlich ist.

ZEUGNIS		
für Lehrer		
Name:	Schmidt	
Bewertet wird der Unterricht in Klasse:	Schuljahr:	
15/16		
Betragen:	$\mathbf{2}$	
Ordnung:	$\mathbf{2}$	
Fleiß:	$\mathbf{2}$	
Wissen:	$\mathbf{1}$	
Aussehen:	$\mathbf{3}$	
Auftreten:	$\mathbf{2}$	
Humor:	$\mathbf{2}$	
Anstand:	$\mathbf{2}$	
Bemerkungen:	keine	
Gesamturteil:	$\mathbf{2}$	
Die Schüler/innen der Klasse:	$\mathbf{6 b}$	

2 Hier ist für den Platzhalter reserviert

In der Mathematik verwendet man meistens die Buchstaben a, b, x und y, um anzuzeigen, dass hier ein Plätzchen freigehalten wird für Zahlen. Das kennst du aber schon aus Klasse 5, weil du dort mit Symbolen wie \qquad gearbeitet hast.
Stelle einmal schnell fest, für wen die Plätze hier freigehalten werden. Vielleicht merkst du ganz schnell, welche Zahlen sich in die Kästchen setzen dürfen.

3 Platzhalter gefragt

Setze in den 20 Aufgaben für den Platzhalter \square eine geeignete Zahl ein.
Diese Zahl findest du ganz sicherlich in dem Silbenschema.
Wenn du dann die Silben ordnest, erhältst du einen Lösungsspruch.

1. $\square+39=87$
2. $98+\square=105$
3. $286-\square=267$
4. $\square-19=60$
5. $\square+29=100$
6. $145: \square=5$
7. 254 : $\square=2$
8. $\square: 3=81$
9. $\square: 11=8$
10. $\square-43=43$
11. $76-\square=35$
12. $\square+287=598$
13. $125+\square=178$
14. $\square-17=17$
15. $\square: 4=4$
16. $\square-28=66$
17. $27: \square=3$
18. $\square: 19=4$
19. $\square+123=190$
20. $27: \square=9$

Setze in den 20 Aufgaben für den Platzhalter \square eine geeignete Zahl ein.
Diese Zahl findest du ganz sicherlich in dem Silbenschema.
Wenn du dann die Silben ordnest, erhältst du einen Lösungsspruch.

1. $\square+39=87$
2. $98+\square=105$
3. $286-\square=267$
4. $\square-19=60$
5. $\square+29=100$
6. $145: \square=5$
7. $254: \square=2$
8. $\square: 3=81$
9. $\square: 11=8$
10. $\square-43=43$
11. $76-\square=35$
12. $\square+287=598$
13. $125+\square=178$
14. $\square-17=17$

15. $\square: 4=4$
16. $\square-28=66$
17. $27: \square=3$
18. $\square: 19=4$
19. $\square+123=190$

5 Terme - wofür sind sie gut?

Man kann Variable a, b, c, usw. auch benutzen, um Strecken darzustellen.
Hier ist die Strecke a viermal aneinander gelegt worden.

Die Gesamtstrecke ist also a + a + a + a oder $4 \cdot a$.
Knickt man diese Strecken einzeln um, so lässt sich auch ein Term für den Umfang eines Quadrates erstellen.

Gib einmal Terme an für die Umfänge der abgebildeten Figuren.
a)

b)
c)
d)
e)

Gib einmal Terme an für die Umfänge der abgebildeten Figuren.
a)
b)
c)
d)
e)

9 Welcher Term stimmt？

Ich denke mir eine Zahl und verzehnfache sie．Von diesem Ergebnis
 subtrahiere ich 12 und verdopple die so entstandene Differenz．Dieser lange Text lässt sich kurz und knapp in mathematischer Schreibweise darstellen．Aber wie？Finde den passenden Term．
a）$x \cdot 10-12 \cdot 2$
b）$(x \cdot 10-12) \cdot 2$
c） $2 \cdot x \cdot(10-12)$

Klar doch！（x•10－12）• 2 tut＇s．
Finde heraus，welcher Term stimmt．Die Kennbuchstaben ergeben bei richtiger Lösung ein Wort．Wie heißt es？

Ich denke mir eine Zahl und verachtfache sie． Von diesem Ergebnis subtrahiere ich 7. Ich denke mir eine Zahl und halbiere sie． Zu diesem Ergebnis addiere ich 12. Ich denke mir eine Zahl und addiere 15 hinzu． Von dieser Summe bilde ich das Vierfache．
Von 345 subtrahiere ich das Fünffache meiner gedachten Zahl und dividiere das Ergebnis durch 3. Ich bilde die Differenz aus 93 und der Summe aus meiner gedachten Zahl und 23.
Ich bilde die Summe aus 42 und dem
Siebenfachen meiner gedachten Zahl．
Ich bilde die Differenz aus 49 und dem vierten Teil meiner gedachten Zahl．

$468 \cdot(x-7)$	D $8 \cdot x-7$
） $8: 2+12$	\＆2：x＋12
D $x+15 \cdot 4$	（0）$(x+15) \cdot 4$
$\int(345-5 \cdot x): 3$	［ $5 \cdot x-345: 3$
b $93-x+23$	島 $93-(x+23)$
［］）$(42+7) \cdot x$	［3 $42+7 \cdot x$
95 49－x：4	（D） $49: 4-x$

Ich denke mir eine Zahl（x）und verzehnfache sie（•10）．
Von diesem Ergebnis subtrahiere ich 12 （－12）．
Die so entstandene Differenz（es müssen also Klammern gesetzt werden）verdoppele ich（ $\cdot 2$ ）．
Also kommt nur der Term（x•10－12） 2 in Frage．

Ich denke mir eine Zahl und verachtfache sie． Von diesem Ergebnis subtrahiere ich 7.
Ich denke mir eine Zahl und halbiere sie．
Zu diesem Ergebnis addiere ich 12.
Ich denke mir eine Zahl und addiere 15 hinzu． Von dieser Summe bilde ich das Vierfache．
Von 345 subtrahiere ich das Fünffache meiner gedachten Zahl und dividiere das Ergebnis durch 3. Ich bilde die Differenz aus 93 und der Summe aus meiner gedachten Zahl und 23.
Ich bilde die Summe aus 42 und dem Siebenfachen meiner gedachten Zahl．
Ich bilde die Differenz aus 49 und dem vierten

	5 8 8 － $5-7$
D $x: 2+12$	
	（0）$(x+15) \cdot 4$
$\int(345-5 \cdot x): 3$	
	』 $93-(x+23)$
	约 $42+7 \cdot x$
$\text { GN } 10 \quad v .1$	

30 Äquivalent, ja oder nein?

Merke dir also: Wenn man auf beiden Seiten einer Gleichung

- dieselbe Zahl addiert oder subtrahiert,
- mit derselben Zahl (außer Null) multipliziert,
- durch dieselbe Zahl (außer Null) dividiert, dann ändert sich an der Lösung dieser Gleichung nichts.

Die Gleichungen

$$
x+7=32 \quad x+15=40 \quad x+3=28 \quad x+1=26 \quad x-5=20
$$

haben alle die Lösung 25. Sie sind einfach dadurch entstanden, dass man bei der Gleichung $x=25$ auf beiden Seiten jeweils dieselbe Zahl addiert oder subtrahiert hat. Solche Gleichungen nennt man äquivalent (gleichwertig).
Untersuche einmal, ob die folgenden Gleichungen äquivalent sind.
Sie sind dadurch entstanden, dass auf beiden Seiten der Gleichung mit derselben Zahl multipliziert oder durch dieselbe Zahl dividiert wurde.
Die Buchstaben bei den falschen »Fuffzigern« ergeben ein Lösungswort. Wei heißt es?

N	$x=3,5$	5	$-15 x=-52,5$	0	0,5x	0	$\frac{1}{4} x=0,875$
5	$0,25 x=0,875$	Ω	$x: 5=-9$	9		O	$11,7 x=40,5$
B	$\frac{x}{10}=35$	M	$\frac{x}{15}=0,2 \overline{3}$	0	$x=-14$	(5)	$\frac{1}{5} x=3,5$

$$
0 \quad 0,5 x=7
$$

$\int \quad \frac{x}{10}=35$
(5) $\frac{1}{5} x=3,5$

Lösung:

In den seltensten Fällen kommt man bei der Umformung von Gleichungen mit nur einer Rechenart aus. Man muss dann zwei oder drei oder mehr Rechenoperationen durchführen.
Nimm z. B. die Gleichung $3 x+18=36$.

1. Möglichkeit

$$
\begin{array}{rlrl}
3 x+18 & =39 & & \mid-18 \\
3 x & =21 & \mid: 3 \\
x & =7 & \\
L & =\{7\} &
\end{array}
$$

2. Möglichkeit

$$
\begin{aligned}
3 x+18 & =39 \quad \mid: 3 \\
x+6 & =13 \quad \mid-6 \\
x & =7 \\
L & =\{7\}
\end{aligned}
$$

Welche der beiden Möglichkeiten du nutzt, um zur Lösung zu gelangen, bleibt sich gleich. Aber oft ist es günstiger, erst zu addieren oder zu subtrahieren und anschließend erst zu multiplizieren oder zu dividieren.

Welche Aufgaben sind verkehrt gelöst? Korrigiere die Fehler.
a)
b)
c)
d)
$-5 x-17=48$
$x=-6,2$
$0,2 y+3,6=9$
$y+18=45$
$y=27$
$L=\{27\}$
$-16+4 z=28$
$-21=3 x+24$
$-4+z=28$
$-3=3 x$
$z=32$
$L=\{32\}$
$-1=x$ $L=\{-1\}$
e)
$\begin{aligned}-\frac{1}{2} x-12 & =14 \\ x+24 & =-28\end{aligned}$
f)
$-0,3 w+1,8=12$

$$
\begin{aligned}
-0,3 w & =10,2 \\
w & =-34 \\
L & =\{-34\}
\end{aligned}
$$

g)
$\begin{aligned}-16-2 z & =38 \\ 8+z & =-19\end{aligned}$
h)
$z=-27$
$L=\{-27\}$

a)

$$
\begin{aligned}
-5 x-17 & =48 \\
-5 x & =65 \\
x & =-13 \\
L & =\{-13\}
\end{aligned}
$$

b)
$0,2 y+3,6=9$
$y+18=45$

$$
\begin{aligned}
& y=27 \\
& L=\{27\}
\end{aligned}
$$

c)

$$
\begin{aligned}
-16+4 z & =28 \\
-4+z & =7 \\
z & =11 \\
L & =\{11\}
\end{aligned}
$$

d)
$-21=3 x+24$
$-45=3 x$
$-15=x$
$L=\{-15\}$
e)
$\begin{aligned}-\frac{1}{2} x-12 & =14 \\ x+24 & =-28 \\ x & =-52 \\ L & =\{-52\}\end{aligned}$
f)
$-0,3 w+1,8=12$
$-0,3 w=10,2$
$w=-34$
$L=\{-34\}$
g)

$$
\begin{aligned}
-16-2 z & =38 \\
8+z & =-19
\end{aligned}
$$

$$
z=-27
$$

$$
L=\{-27\}
$$

h)
$-21=\frac{1}{3} x+24$
$-63=x+72$
$-135=x$
$L=\{-135\}$

Weißt du noch, wie man Klammern ausmultipliziert? Klar doch! Jeder Summand in der Klammer wird mit dem Faktor multipliziert.

$$
7 \cdot(4 x-3)=7 \cdot 4 x+7 \cdot(-3)=28 x-21
$$

Übrigens kann der Malpunkt zwischen der 7 und der Klammer entfallen

Multipliziere aus und fasse - wenn möglich - zusammen:
a) $4 \cdot(2 a-3 b)=$
b) $-2 \cdot(4 x+12 y)=$
c) $a \cdot(2 x-4 y)=$
d) $17 \cdot(-2,5 x+3 y-4 z)=$
e) $3 \cdot(4 x+2 y)-5 \cdot(2 x-3 y)=$
f) $(6 a-3 b) \cdot 4+(2 b+3 a) \cdot 3=$
g) $a \cdot(a-b)-b \cdot(b-a)=$
h) $3 \cdot(4 a+5 b)+4 \cdot(5 a-6 b)-2 \cdot(5 a-b)-12 a=$
i) $8 \cdot(2 a+4 b-8 c)-5 \cdot(5 a-9 b+10 c)+10 \cdot(-4 a+10 b-c)=$
j) $a \cdot(4 a+2 b)-2 a \cdot(3 a-7 b)=$
k) $x \cdot(3 x+8 y)-2 x \cdot(-3 x-2 y)=$
l) $-8 a \cdot(3 a-4)-\left(-15 a^{2}+8 a\right)=$
m) $0,5 \cdot(16 a-4 b+3 c)-1,7 \cdot(-5 a+4 b-8 c)-(12 a-4 b+3 c)=$
a) $4 \cdot(2 a-3 b)=8 a-12 b$
b) $-2 \cdot(4 x+12 y)=-8 x-24 y$
c) $a \cdot(2 x-4 y)=2 a x-4 a y$
d) $17 \cdot(-2,5 x+3 y-4 z)=-42,5 x+51 y-68 z$
e) $3 \cdot(4 x+2 y)-5 \cdot(2 x-3 y)=2 x+21 y$
f) $(6 a-3 b) \cdot 4+(2 b+3 a) \cdot 3=33 a-6 b$
g) $a \cdot(a-b)-b \cdot(b-a)=a^{2}-b^{2}$
h) $3 \cdot(4 a+5 b)+4 \cdot(5 a-6 b)-2 \cdot(5 a-b)-12 a=10 a-7 b$
i) $8 \cdot(2 a+4 b-8 c)-5 \cdot(5 a-9 b+10 c)+10 \cdot(-4 a+10 b-c)=-49 a+177 b-124 c$
j) $a \cdot(4 a+2 b)-2 a \cdot(3 a-7 b)=-2 a^{2}+16 a b$
k) $x \cdot(3 x+8 y)-2 x \cdot(-3 x-2 y)=9 x^{2}+12 x y$
l) $-8 a \cdot(3 a-4)-\left(-15 a^{2}+8 a\right)=-9 a^{2}+24 a$
m) $0,5 \cdot(16 a-4 b+3 c)-1,7 \cdot(-5 a+4 b-8 c)-(12 a-4 b+3 c)=4,5 a-4,8 b+12,1 c$

72 Wir rechnen mit Prozenten

Hast du die Formelumstellung nach W, G und p geschafft?
Dann können dir die folgenden Aufgaben nicht sonderlich schwer fallen.

$$
\begin{aligned}
& W=\frac{G \cdot p}{100} \\
& G=\frac{100 \cdot W}{p} \\
& p=\frac{100 \cdot W}{G}
\end{aligned}
$$

$\mathbf{G}(\boldsymbol{\text { (})}$	2400	2750	812			175	22,50	
$\mathbf{p}(\%)$	3,5	8		11	$7 \frac{3}{4}$			4,2
$\mathbf{W}(\boldsymbol{\text { () }}$			38,57	10159,60	643,25	10,50	4,50	987,42

$\mathbf{G}(\boldsymbol{(})$	2400	2750	812	92360	8300	175	22,50	23510
$\mathbf{p}(\%)$	3,5	8	4,75	11	$7 \frac{3}{4}$	6	20	4,2
$\mathbf{W}(\boldsymbol{(})$	84	220	38,57	10159,60	643,25	10,50	4,50	987,42

78 Das ganze noch einmal mit Wein und Kartoffeln

Wenn du die vorherige Aufgabe mit den Eiern richtig verstanden hast, dann wird es nicht schwer sein, den Ansatz für die folgenden Aufgaben zu finden.
Die Lösungen sind dann nur noch eine reine Formsache für dich.

1. Winzer Sorethroat füllt ein 25000 l - Weinfass um in $0,7 l$ - Flaschen und 0,5 l - Flaschen. Insgesamt benötigt er 38000 Flaschen. Wie viele Flaschen jeder Sorte hat er gefüllt?
2. Der Bio-Kartoffelhändler Maximilian Knolle verkaufte insgesamt 500 kg Bio-Kartoffeln der Sorte Hansa zu 0,65 € je kg und der fest kochenden Sorte Sieglinde zu 0,85 € je kg. Seine Tageseinnahme betrug genau 381 €. Wie viele kg jeder Sorte hat er verkauft?

78 1. $0,7 \cdot x+0,5 \cdot(38000-x)=25000$

$$
\begin{aligned}
0,7 \cdot x+0,5 \cdot(38000-x) & =25000 \\
0,7 \cdot x+19000-0,5 \cdot x & =25000 \\
0,2 \cdot x+19000 & =25000 \\
0,2 \cdot x & =6000 \\
x & =30000
\end{aligned}
$$

Er braucht 30000 Flaschen zu 0,7 l und 8000 Flaschen zu 0,5 l.
2.

$$
\begin{aligned}
\mathbf{0 , 6 5} \cdot x+\mathbf{0 , 8 5} \cdot(\mathbf{5 0 0}-\mathbf{x}) & =381 \\
0,65 \cdot x+0,85 \cdot(500-x) & =381 \\
0,65 \cdot x+425-0,85 \cdot x & =381 \\
-0,20 \cdot x+425 & =381 \\
-0,20 \cdot x & =-44 \\
x & =220
\end{aligned}
$$

Er verkauft 220 kg Hansa und 280 kg Sieglinde.

