Wie viele Quadrate sind es?

Entferne vier Streichhölzer so, dass noch acht gleich große Quadrate übrig bleiben.

Wie viele Dreiecke sind es?

Entferne acht Streichhölzer so, dass nur noch drei Quadrate zu sehen sind.

Ein Streichholz ist so umzulegen, dass die Aufgaben mit den römischen Zahlzeichen stimmen.
1 P

Es ist ein englisches Sprichwort zu ermitteln, das übersetzt soviel wie „In jedem Beruf gibt es ein paar Tricks" bedeutet. Wie du das schaffst? Ganz einfach! Du bestimmst die Lösungsmengen der 25 Gleichungen. Deine - hoffentlich richtigen - Ergebnisse verraten dir den Weg durch das Labyrinth und damit auch die Buchstaben, die du aneinander reihen sollst.

$(x-3)(x+4)=x^{2}-10$ -	$(x+5)^{2}=x^{2}+95$	$\Delta \square$	-9) $=(x-3)(x-1)$	Δ
$4(x+6)(x-5)=4 x^{2}-11 x \Delta>$	$(x-2)^{2}-(x+2)^{2}=8(1-x)$		$(x-2,5)(-x+12)=13,5-x^{2}$	Δ
$x(x+3)=(x+2)(x-1) \Delta>$	$(2 x+3)^{2}=4 x^{2}+21$		$(x+3)^{2}-x=5(x+5)+x^{2}-16$	$\Delta \square$
$(2 x+5)^{2}=2 x(2 x+5)+5 \Delta>$	$(x-3)(x+4)=(x+6)(x-14)$	$\Delta \square$	$(x+1)^{2}-(x-1)^{2}=44$	$\Delta \square$
$(x-2)(x-5)=x^{2}-81 \quad \Delta>$	$x(x+2)=(x+22)(x-9)$	$\Delta \square$	$x(x-5)=(x+3)(x-6)$	Δ
$(x-4)(x+4)=x(x+4) \Delta>$	$(x+1)^{2}+(x-2)^{2}=2 x^{2}$	$\Delta \square$	$(x+8)(x-8)=(x+2)^{2}$	Δ
$(x+4)^{2}=3 x+x^{2}-14 \quad \Delta>$	$(x+1)(x+0,5)=(x-1)(x-0,5)$		$(x+1)^{2}+15=(x-2)^{2}-48$	Δ
$(x-10)^{2}=(x-2)^{2} \quad \Delta>$	x+7)(5x-16) $=(9+10 x)(2 x-3)$		$6(4 x+10)=8(10 x-10)$	$\Delta 8$
$(x+6)^{2}-(x-9)^{2}=105$				

START

Wenn du die Gleichungen an den 12 Dreierwaben so durch eine Zahl ergänzt, dass du links eine binomische Formel erhältst, dann sagt dir deine Lösung, wohin die Buchstaben dieser Wabe geschrieben werden müssen. Deine Lösung muss mit einer der Zahlen im großen Schema übereinstimmen. Wie lautet der englische Lösungsspruch, der aussagt, dass Dummheit und Reichtum sich nicht sonderlich gut vertragen?

netzwerk 24 + lernen
$x^{2}+18 x+\quad=88+$

 + -Um dieses Logikrätsel lösen zu können, muss ich dir erst ein paar Hinweise geben und ein einfaches Rätsel vorgeben.
Hinweise:

1. Der Junge, der sich die CD von Phil Collins kaufte, ist drei Jahre älter als Martin.
2. Der/die Heranwachsende mit der alten

Pet-Shop-Boys-Platte auf dem Plattenteller ist 15 Jahre.

Martin und Bettina haben sich keine
Phil Collins-CD gekauft (Hinweis 1). Also muss es Armin gewesen sein, der damit auch 16 Jahre alt sein muss.

Martin ist dann 13 Jahre alt. Bettina muss dann notgedrungen 15 Jahre alt sein.

Der Schotte Jackie Stewart, der wohl erfolgreichste Rennfahrer in den Jahren 1965 bis 1973, gab die Rennfahrerei am 7. Oktober 1973 auf, als sein Freund Francois Cevert beim Training zum „American Grand Prix" umkam. Ganz so schlimm erging es dem Fahrer Ricky Blauda in diesem Rätsel nicht. Er hatte nur einen Unfall, der glimpflich abging. Aber sein Wagen, der machte laufend schlapp.
Wo, in welchem Monat und in welcher Runde er mit welchem Defekt ausschied, lässt sich sehr schnell ermitteln.

Hinweise:

1. In Le Mans war es ein

Motorschaden, der Ricky vorzeitig ausscheiden ließ.
2. Bei dem Rennen im Mai kam das Aus in der verflixten
7. Runde.
3. In dem Monat vor dem Nürburgringrennen setzte der Vergaser in der 19. Runde aus.
4. Es war nicht im Juni beim Großen Preis von Spa als die Benzinpumpe ihren Geist aufgabe. Weder dort noch im Juli, wo er den Unfall baute, erreichte er die 27. Runde. Dieses Ereignis "feierte" er auch nicht im April.
5. Es war in der vierten Runde,

Rennpiste	Monat	Runde	Schaden
Avus			
Monte Carlo			
Le Mans			
Nürburgring	Zur Volversion		
Spa			

Um dieses Logikrätsel lösen zu können, muss ich dir erst ein paar Hinweise geben und ein einfaches Rätsel vorgeben.
Hinweise:

1. Der Junge, der sich die CD von Phil Collins kaufte, ist drei Jahre älter als Martin.
2. Der/die Heranwachsende mit der alten

Pet-Shop-Boys-Platte auf dem Plattenteller ist 15 Jahre.

				¢ ¢ ¢ -	-	In diesem Schema kennzeichnest du eine gesicherte Aussage durch einen Kreis. Bei nicht zutreffenden Aussagen machst du ein Kreuz.
Armin						
Bettina						
Martin						
13 Jahre						
15 Jahre						
16 Jahre						

Martin und Bettina haben sich keine
Phil Collins-CD gekauft (Hinweis 1). Also muss es Armin gewesen sein, der damit auch 16 Jahre alt sein muss.

Martin ist dann 13 Jahre alt. Bettina muss dann notgedrungen 15 Jahre alt sein.

Hamburg fördert Pop-Nachwuchs ... so lautete eine dpa-Meldung. Talentierten Nachwuchsmusikern aus Rock, Pop, Jazz sowie Lied und Chanson wird die Möglichkeit geboten, sich in Kompaktkursen theoretisch und praktisch fortzubilden. Die Hochschule will zwei Kurse durchführen, bei denen auch Gastdozenten zu Wort kommen. In diesem Jahr konnten Heinz Rudolf Kunze und Ulla Meinecke verpflichtet werden. Wer sich für den Kompaktkurs von drei Wochen bewarb und welches Instrument wie lange gespielt wurde, lässt sich ohne Notenkenntnisse herausfinden.

Hinweise:

1. Andreas spielt noch nicht so lange wie der Nachwuchssaxophonist namens Röchling.
2. Claus heißt mit Nachnamen Boller.
3. Luigi ist es nicht, der sein Instrument seit vier Jahren bearbeitet.
4. Der Gitarrist übt seit drei Jahren. Mit Nachnamen heißt er aber nicht Meyerling, denn der spielt sein Instrument genau ein Jahr länger als Rainer, der Posaunist.
5. Fenninger hat sich der Musik seit fünf Jahren verschrieben.

Vorname	Nachname	Instrument	Dauer
Andreas			
Claus			
Luigi			
Peter	Zur Vollversion		
Rainer			

Lösungen Rätsel der Woche

Woche 33

Woche 34

$$
y=2 x^{2}+12 x+22
$$

$$
y=x^{2}+4 x+5
$$

$$
y=x^{2}+6 x+7
$$

$$
y=2 x^{2}-4 x+1
$$

$$
y=0,5 x^{2}+2 x-2
$$

$$
y=x^{2}-6 x+12
$$

Might is right.
Macht geht vor Recht.
$y=x^{2}-2 x-1$

$$
y=2 x^{2}+12 x+16
$$

$$
y=x^{2}+2 x+1
$$

$$
y=x^{2}+2 x-3
$$

$$
y=x^{2}-4 x+7
$$

$$
y=-x^{2}-2 x+3
$$

$$
y=-x^{2}+6 x-12
$$

$$
y=x^{2}-6 x+6,5
$$

$$
y=x^{2}+2 x+2
$$

$$
y=x^{2}+5 x+2,75
$$

$$
y=x^{2}-6 x+11,5
$$

$$
y=x^{2}+8 x+14
$$

Still waters run deep.
Stille Wasser gründen tief.

$$
y=(x+3)^{2}-2
$$

$$
y=(x-1)^{2}-2
$$

$$
y=0,5(x+2)^{2}-4
$$

$$
y=(x+2)^{2}+1
$$

(L)
$y=(x+1)^{2}-4$

$$
y=2(x+3)^{2}-2
$$

$$
y=2(x+3)^{2}+4
$$

W

$$
y=(x-3)^{2}+3
$$

$$
y=-(x-3)^{2}-3
$$

$$
y=(x-2)^{2}+3
$$

$$
y=(x+1)^{2}
$$

$$
y=2(x-1)^{2}-1
$$

R
(D)
N. $\quad y=(x-3)^{2}-2,5$

$$
y=(x+4)^{2}-2
$$

Lösungen Rätsel der Woche

Woche 46

