Vorbemerkungen

Gleichungen 1. Grades mit zwei Variablen gehören zum Stoffgebiet der Klasse 9 der Sekundarstufe I. Die hier vorgestellten 194 Aufgaben sind in einzelne Parcours [(franz.) Hindernisbahn, Renn-, Laufstrecke] unterteilt, die von den Schülerinnen und Schülern nicht unbedingt nacheinander, sondern auch parallel durchlaufen werden können. Die Aufgabenkarten werden ausgeschnitten, in der Mitte gefalzt und entweder zusammengeklebt oder laminiert. Man erhält so eine Lernkartei, die sich über Jahre hin verwenden und ergänzen lässt. Laminierte Aufgabenkarten haben den Vorteil, dass sie länger haltbar sind und man sie mit wasserlöslichen Stiften beschriften kann. Pro Parcours sollte man einen zweifachen Aufgabensatz erstellen, um Engpässe und Wartezeiten zu vermeiden.
Das Format der Aufgabenkarten $9 \times 13 \mathrm{~cm}$ ermöglicht es fernerhin, sie in sogenannte Flip-Alben einzustecken, die normalerweise für Fotos gedacht und im Handel für ca. $3,95 €$ zu erwerben sind (Vorderseite Aufgabe, Rückseite Lösung). In die handelsüblichen Alben passen in der Regel 50 Aufgabenkarten nebst Lösungen.
Für jeden Schüler und jede Schülerin kopiert man die Kontrollbögen, um einen Überblick der bearbeiteten Aufgaben zu erhalten. Zu jedem Parcours gibt es detaillierte Anweisungen, wie die Aufgaben zu lösen sind. Gegebenenfalls kopiert man diese Anweisungen ebenfalls in Klassenstärke.
Zu jedem Parcours bastelt man sich einen Behälter, in den die entsprechenden Aufgabenkarten des Parcours abgelegt werden. Damit dieser Behälter etwas stabiler wird, empfiehlt es sich, Kopien auf stärkeren Karton zu ziehen.

Inhaltsverzeichnis

Bastelbogen 1	Seite	4
Parcours 1: Kontrollbogen »So zeichnest du Lineare Funktionen«	Seite	5
Parcours 1: So zeichnest du Lineare Funktionen	Seite	6
Aufgaben Parcours 1	Seite	7
Einführung in das Themengebiet	Seite	17
Bastelbogen 2	Seite	18
Parcours 2: Kontrollbogen »Das zeichnerische Lösungsverfahren«	Seite	19
Parcours 2: Das zeichnerische Lösungsverfahren	Seite	20
Aufgaben Parcours 2	Seite	22
Bastelbogen 3	Seite	32
Parcours 3: Kontrollbogen »Das Gleichsetzungsverfahren«	Seite	33
Parcours 3: Das Gleichsetzungsverfahren	Seite	34
Aufgaben Parcours 3	Seite	35
Bastelbogen 4	Seite	45
Parcours 4: Kontrollbogen »Das Einsetzungsverfahren«	Seite	46
Parcours 4: Das Einsetzungsverfahren	Seite	47
Aufgaben Parcours 4	Seite	48
Bastelbogen 5	Seite	58
Parcours 5: Kontrollbogen »Das Additionsverfahren«	Seite	59
Parcours 5: Das Additionsverfahren	Seite	60
Aufgaben Parcours 5	Seite	61
Bastelbogen 6	Seite	71
Parcours 6: Kontrollbogen »Aufgaben mit Bruchzahlen«	Seite	72
Parcours 6: Aufgaben mit Bruchzahlen	Seite	73
Aufgaben Parcours 6	Seite	74
Bastelbogen 7	Seite	84
Parcours 7: Kontrollbogen »Textaufgaben«	Seite	85
Parcours 7: Textaufgaben	Seite	86
Aufgaben Parcours 7	Seite	89
Bastelbogen 8	Seite	109
Parcours 8: Kontrollbogen »Gemischte Aufgaben«	Seite	110
Parcours 8: Gemischte Aufgaben	Seite	111

PARCOURS 1:

Kontrollbogen »So zeichnest du Lineare Funktionen"
Hi , ich bin Robbi, die Robbe mit dem richtigen Riecher!
Wenn du eine Aufgabe richtig gelöst hast, dann male den Kreis mit der entsprechenden Aufgabennummer farbig aus. So hast du immer einen Überblick, welche Aufgaben du im Parcours 1 kannst.

18
310

19 6), 4 11)

PARCOURS 1 :

So zeichnest du Lineare Funktionen

Beispiel 1: $y=2 \cdot x+3$
Du erstellst eine Wertetabelle.
Wähle die x-Werte geschickt aus.

x	Rechnung	y
0	$2 \cdot 0+3$	3
2	$2 \cdot 2+3$	7
-3	$2 \cdot(-3)+3$	-3

Trage die Punkte (0/3), (2/7) und $(-3 /-3)$ in das Koordinatensystem ein und verbinde sie zu einer Geraden. Du benötigst zwar nur zwei Punkte, um eine Gerade zu zeichnen, aber du weißt ja: »Vertrauen ist gut, Kontrolle ist besser«.

Beispiel 2: $\mathrm{y}=-1,5 \cdot \mathrm{x}+2$
Du benötigst zwei Punkte, um eine Gerade zu zeichnen.
Die Gerade schneidet die y-Achse im Punkt P(0/2). Markiere diesen Punkt.
Wähle für x eine beliebige Zahl ungleich Null, für die du den zugehörigen y - Wert noch »im Kopf« berechnen kannst, z. B. $x=4(-1,5 \cdot 4+2=-4)$.
Trage den Punkt $P(4 /-4)$ in das Koordinatensystem ein.
Verbinde die beiden Punkte zu einer Geraden.

Beispiel 3: $y=\frac{2}{3} \cdot x-4$
Du weißt, dass die Gerade die y-Achse im Punkt $\mathrm{P}(0 /-4)$ schneidet. Markiere diesen Punkt.
Zeichne von diesem Punkt aus nach links und nach rechts eine Treppe mit einer Stufenhöhe 2 und einer Stufenbreite 3 ein.
Verbinde die »Stoßkanten« dieser Treppe zu einer Geraden.

Die Vorlage wird auf stärkeren Karton kopiert, ausgeschnitten, gefalzt und geklebt. Du hast jetzt einen
Behälter, in den du die Aufgabenkarten ablegen kannst.

PARCOURS 4 :

Kontrollbogen „Das Einsetzungsverfahren،
Hi , ich bin Robbi, die Robbe mit dem richtigen Riecher!
Wenn du eine Aufgabe richtig gelöst hast, dann male den Kreis mit der entsprechenden Aufgabennummer farbig aus. So hast du immer einen Überblick, welche Aufgaben du im Parcours 4 kannst.

PARCOURS 4 :
 Das Einsetzungsverfahren

Ein weiteres Verfahren zur Lösung von linearen Gleichungssystemen ist das Einsetzungsverfahren. Wie der Name schon sagt, sollst du bei diesem Verfahren etwas einsetzen. Damit du dir darunter etwas vorstellen kannst, hier ein Beispiel:

Den Kohl putzen, waschen und fein schneiden. In einem Topf das Schmalz zergehen lassen, das Fleisch und die grob geschnittene Zwiebel darin anbraten. Das Gemüse, etwas Wasser und die Gewürze zugeben und in etwa einer Stunde gar kochen. Das Mehl darüberstäuben und, wenn nötig, noch etwas Wasser zugießen.
Anstelle des Kasselers kann man auch vier Mettwürstchen mit dem Gemüse gar kochen.

Weil Karlchen Boilnix gerade kein Kasseler zur Verfügung hat, ersetzt er es kurzerhand durch vier Mettwürstchen. So ähnlich funktioniert auch das Einsetzungsverfahren.

$$
\mathrm{y}=500 \mathrm{~g} \text { Kasseler }
$$

$$
\begin{aligned}
\text { I. } 8 x+y & =-18 \\
\text { II. } y & =9 x-1
\end{aligned}
$$

$9 x-1=$ vier Mettwürstchen
$8 x+y=-18$ entspricht Karlchens Rezept
$y=9 x-1$ nimm statt 500 g Kasseler vier Mettwürstchen

Also ersetzt du in dem Rezept ($8 x+y=-18$) das
Kasseler (y) durch die vier Mettwürstchen $(9 x-1$):

$$
\begin{aligned}
\text { la. } & 8 x+9 x-1 & =-18 \\
\text { lla. } & y & =9 x-1
\end{aligned}
$$

Und siehe da, auf diese Art und Weise ist in Gleichung la die Variable y »eliminiert« worden und du hast eine Gleichung erhalten, in der nur noch die Variable x auftaucht. Diese Art von Gleichung hast du aber bereits in Klasse 8 gelöst. Du rechnest in einer Nebenrechnung zunächst mit dieser Gleichung allein weiter:

$$
\begin{array}{rlrl}
8 x+9 x-1 & =-18 & & \text { Fasse zusammen } \\
17 x-1 & =-18 & & \text { Addiere } 1 \\
17 x & =-17 & & \text { Dividiere durch } 17 \\
x & =-1 &
\end{array}
$$

Da du die Lösung für x errechnet hast, fällt es dir nicht schwer, die Lösung für y anzugeben.

- 1 wird für x in Gleichung Ila eingesetzt.

$$
\begin{aligned}
y & =9 x-1 \\
y & =9 \cdot(-1)-1 \\
y & =-10 \\
I L & =\{(-1 ;-10)\}
\end{aligned}
$$

Notiere die Lösungsmenge:
Mache die Probe, indem du die Werte in die beiden Gleichungen einsetzt:

$$
\begin{aligned}
8 \cdot(-1)+(-10) & =-18 \\
-18 & =-18 \\
-10 & =9 \cdot(-1)-1 \\
-10 & =-10
\end{aligned}
$$

Manchmal gestaltet sich das Einsetzen etwas schwieriger:

I. $13 x-5=-6 y \quad$ ergibt $13 x-5=-6 \cdot(-13-16 x)$, also netpwerk $=-13-16 x$ ternen

