Station	Seite(n) O! \times E/P			benötigte Materialien
Umfang und Flächeninhalt von Vielecken (Wiederholung)	9	\bullet	E	Geodreieck, Heft, Stift, Blatt
Zinsrechnung (Wiederholung)	9	-	P	Taschenrechner, Heft, Stift, Blatt
Der vermehrte - verminderte Grundwert (Wiederholung)	11	\bullet	P	Taschenrechner, Heft, Stift, Blatt
Die binomischen Formeln (Wiederholung 1)	11	\bullet	P	Heft, Stift, Blatt
Die binomischen Formeln (Wiederholung 2)	13	!	P	Heft, Stift, Blatt
Gleichungen (Wiederholung)	13	!	P	Heft, Stift, Blatt
Lineare Funktionen des Typs $\mathrm{y}=\mathrm{m} \cdot \mathrm{x}$	15	\bullet	P	Geodreieck, Heft, Stift, Blatt Tipp-Karte: Werretabelle und Graph
Lineare Funktionen des Typs $y=m \cdot x$	15	\bullet		Heft, Stift, Blatt Tipp-Karte: Erstellung von Graphen mithilfe von Steigungsdreiecken
Lineare Funktionen des Typs $y=m \cdot x$	17	!	P	Heft, Stift, Blatt Tipp-Karte: Erstellung von Graphen mithilfe von Steigungsdreiecken
Lineare Funktionen des Typs $y=m \cdot x+n$			P	Heft, Stift, Blatt Tipp-Karte: Erstellung von Graphen mithilfe von Steigungsdreiecken
Lineare Funktionen des Typs $\mathrm{y}=\mathrm{m} \cdot \mathrm{x}+\mathrm{n}$	19	!	P	Heft, Stift, Blatt Tipp-Karte: Erstellung von Graphen mithilfe von Steigungsdreiecken
Lineare Funktionen des Typs $\mathrm{y}=\mathrm{m} \cdot \mathrm{x}+\mathrm{n}$	19	!	P	Geodreieck, Heft, Stift, Blatt
Lineare Funktionen des Typs $y=m \cdot x+n$	21	\bullet	P	Geodreieck, Heft, Stift, Blatt Tipp-Karten: Die Zwei-Punkte-Form, Erstellung von Graphen mithilfe von Steigungsdreiecken
Steigungsdreiecke (1)	21	\bullet	E	Geodreieck, Heft, Stift, Blatt Tipp-Karte: Erstellung von Graphen mithilfe von Steigungsdreiecken
Steigungsdreiecke (2)	23	!	E	Geodreieck, Heft, Stift, Blatt Tipp-Karte: Erstellung von Graphen mithilfe von Steigungsdreiecken
Steigungsdreiecke (3)	23	\bullet	E	Geodreieck, Heft, Stift, Blatt Tipp-Karte: Erstellung von Graphen mithilfe von Steigungsdreiecken
Steigungsdreiecke (4)	25	I	E	Geodreieck, Heft, Stift, Blatt Tipp-Karte: Erstellung von Graphen mithilfe von Steigungsdreiecken
Nullstellen linearer Funktionen	25	\bullet	E	Taschenrechner, Geodreieck, Heft, Stift, Blatt Tipp-Karte: Berechnung von Schnitpunkten der Geraden mit der x-bzw. y-Achse

Inhalt

Station	Seite(n)	-! ${ }^{\text {a }}$	E/P	benötigte Materialien
Lineare Funktionen	27	*	E	Taschenrechner, Geodreieck, Heft, Stift, Blatt
Ermitteln der Funktionsgleichung aus zwei Punkten des Graphen	27	!	P	Taschenrechner, Heft, Stift, Blatt Tipp-Karte: Die Zwei-Punkte-Form
Antiproportionale Funktionen	29	!	P	Taschenrechner, Heft, Stift, Blatt
Graphische Lösung linearer Gleichungssysteme	29	!	E	Geodreieck, Heft, Stift, Blatt Tipp-Karte: Lineare Gleichungssysteme
Lineare Gleichungssysteme: Das Einsetzungsverfahren	31	\bullet	E	Geodreieck, Heft, Stift, Blatt
Lineare Gleichungssysteme: Das Additionsverfahren	31	\bullet	E	Geodreieck, Heft, Stift, Blatt
Lineare Gleichungssysteme: Das Gleichsetzungsverfahren	33	!	E	Geodreieck, Heft, Stift, Blatt
Sachaufgaben: Lineare Gleichungssysteme (1)	33	-	P	Geodreieck, Heft, Stift, Blatt
Sachaufgaben: Lineare Gleichungssysteme (2)	35	*	E	Geodreieck, Heft, Stift, Blatt
Sachaufgaben: Lineare Gleichungssysteme (3)	35	!	E	Geodreieck, Heft, Stift, Blatt
Ähnliche Figuren	37	\bullet	E	Heft, Stift, Blatt
Die zentrische Streckung	37	\bullet	P	Geodreieck, Heft, Stift, Blatt Tipp-Karte: Die zentrische Streckung
Strahlensätze (1)	39	\bullet	P	Taschenrechner, Heft, Stift, Blatt Tipp-Karte: Strahlensätze (1)
Strahlensätze (2)	39	\bullet	P	Heft, Stift, Blatt Tipp-Karte: Strahlensätze (1)
Strahlensätze (3)	41	!	P	Taschenrechner, Heft, Stift, Blatt Tipp-Karten: Strahlensätze (1), Strahlensätze (2)
Potenzen	41	\bullet	E	Heft, Stift, Blatt
Potenzen mit gleicher Basis	43	\bullet	E	Heft, Stift, Blatt
Potenzen mit gleichem Exponenten	43	!	E	Heft, Stift, Blatt

Inhalt

Station	Seite(n) $0!\times E / P$			benötigte Materialien
Potenzieren von Potenzen	45	*	E	Heft, Stift, Blatt
Quadratwurzeln	45	-	E	Taschenrechner, Heft, Stift, Blatt
Irrationale Zahlen	47	!	P	Taschenrechner, Heft, Stift, Blatt
Intervallschachtelung	47	*	P	Taschenrechner, Heft, Stift, Blatt
Wie man im Mittelalter die Wurzel zog	49	*	E	Taschenrechner, Heft, Stift, Blatt
Rechnen mit Wurzeln: Addition und Subtraktion	49	\bullet	E	Heft, Stift, Blatt
Rechnen mit Wurzeln: Multiplikation und Division	51	\bullet	E	Heft, Stift, Blatt
Umformen von Wurzeltermen	51	!	P	Heft, Stift, Blatt
Große Zahlen	53	!	E	Heft, Stift, Blatt
Kleine Zahlen	53	!	E	Heft, Stift, Blatt
n-te Wurzeln	55	*	P	Heft, Stift, Blatt
Zur Auflockerung: Potenzen und Wurzeln	55	$!$	P	Taschenrechner, Heft, Stift, Blatt
Formeln zur Berechnung rechtwinkliger Dreiecke	57	\bullet	P	Heft, Stift, Blatt
Sachaufgaben: Der Satz des Pythagoras (1)	57	!	E	Taschenrechner, Heft, Stift, Blatt Tipp-Karte: Der Satz des Pythagoras
Sachaufgaben: Der Satz des Pythagoras (2)	59	!	E	Taschenrechner, Geodreieck, Heft, Stift, Blatt Tipp-Karte: Der Satz des Pythagoras
Sachaufgaben: Der Satz des Pythagoras (3)	59	\bullet	E	Taschenrechner, Heft, Stift, Blatt Tipp-Karte: Der Satz des Pythagoras
Sachaufgaben: Der Satz des Pythagoras (4)	61	*	E	Taschenrechner, Heft, Stift, Blatt Tipp-Karte: Der Satz des Pythagoras
Sachaufgaben: Der Satz des Pythagoras (5)	61	*	E	Heft, Stift, Blatt Tipp-Karte: Der Satz des Pythagoras

Inhalt

Anleitung

Sehr geehrte Kollegen und Kolleginnen,

dieses Werk zum Stationenlernen im Mathematikunterricht soll Ihnen Ihre alltägliche Arbeit erleichtern. Dabei war es uns besonders wichtig Stationen zu kreieren, die möglichst schüler- und handlungsorientiert sind und mehrere Lerneingangskanäle ansprechen. Denn nur so kann Wissen langfristig gesichert und auch wieder abgerufen werden. Die Reihenfolge der Stationen ist frei wählbar. Dadurch können die Schüler in ihrem individuellen Arbeits- und Lerntempo vorgehen. Aber auch Sie als Lehrer können die Karten in unterschiedlichen Reihenfolgen verwenden. Durch den individuell ausfüllbaren Laufzettel wird bei dieser differenzierten Arbeitsform stets der Überblick gewahrt. Die Materialien eignen sich dank der möglichen Hilfestellungen durch die Tipp-Karten auch hervorragend für das selbstständige Lernen oder die Selbstlernzeit.
Im hinteren Bereich des Hefts finden Sie Tipp-Karten zu einzelnen Stationen.

Stationen:

Die Stationszettel enthalten bewusst keine Nummerierung, um einen flexiblen Einsatz zu gewährleisten. So kann jeder selbst entscheiden, welche Station bearbeitet werden soll. Dies können sowohl Stationen aus einem Bereich sein, ebenso gut dürfen auch Aufgaben aus allen Bereichen vermischt werden. Nach Belieben können Sie die Stationen jedoch auch nummerieren, um den Schülern die Zuordnung zu erleichtern.

Niveaustufen:

Innerhalb der Bereiche gibt es drei unterschiedliche Niveaustufen, die mit • (leicht), ! (mittel) oder \star (schwer) markiert sind. Die mit einem Stern gekennzeichneten Stationen sind für Experten, die mit • gekennzeichneten Stationen sollen von allen Schülern bearbeitet werden. Die Expertenaufgaben enthalten vertiefende oder weiterführende Inhalte. Selbstverständlich können Sie je nach Leistungsstand Ihrer Klasse problemlos Stationen anders kennzeichnen, indem $\mathrm{Sie} \bullet$, ! oder \star übermalen und anders kennzeichnen.

Tipp-Karten:

Wie bereits erwähnt, gibt es für einige Grundaufgaben Tipp-Karten. Es empfiehlt sich, die Tipp-Karten z. B. in Briefumschlägen verpackt den Stationen beizulegen oder sie sogar an einem separaten Ort zu platzieren. So überlegen die Kinder eher, ob sie einen Tipp benötigen oder nicht, und werden nicht so stark dazu verleitet, aus Bequemlichkeit einen Blick darauf zu werfen.

Anleitung

Lösungen:

Wer die Aufgaben der Schüler korrigiert, hängt zum einen von der Lerngruppe und zum anderen von den Vorlieben des unterrichtenden Lehrers ab. So können Sie die Verbesserung der Schüleraufgaben selbst übernehmen, oder diese Aufgabe in die Verantwortung der Kinder übergeben. In diesem Fall haben Sie die Möglichkeit, die Karten einfach auszuschneiden und zu laminieren. Es befindet sich dann direkt auf der Rückseite der Aufgabe die passende Lösung zur einfachen Selbstkontrolle. Alternativ können Sie die Seiten jedoch auch kopieren und die Lösungen, für die Schüler erkenntlich markiert, an einem passenden Ort positionieren.

Stationen-Laufzettel:

Der Stationen-Laufzettel ist so konzipiert, dass die Lehrkraft oder die Schüler die Stationsnummer (alternativ den Bereich) sowie den Stationsnamen eintragen. Die Kinder haken dann ab, wenn sie eine Station erledigt haben. Ein weiterer Haken wird gesetzt, wenn die Station korrigiert wurde. Dies geschieht entweder durch den Lehrer oder die Schüler selbst.

Symbole:

Niveaustufe: leicht

Stift/Bleistift

Blatt Papier

Niveaustufe: mittel

Niveaustufe: schwer

Einzelaufgabe

Partneraufgabe

Geodreieck

Taschenrechner

Nach dieser kurzen Einführung wünschen Ihnen viel $\mathrm{Spaß}$ beim Einsatz der Materialien

Name: \qquad
\qquad
Niveaustufe: leicht

Station	Stationsname	erledigt \checkmark	korrigiert \checkmark

Niveaustufe: mittel

Station	Stationsname	erledigt \checkmark	korrigiert \checkmark

Niveaustufe: schwer

Station	Stationsname	erledigt	korrigiert
			\checkmark

Entnimm die Maße, die du brauchst, um den Umfang und den Flächeninhalt der Vierecke zu berechnen, der Zeichnung.

Vervollständigt die Tabellen.

Kapital	$3625 €$	$9702 €$		$3350 €$	$3760 €$		$6580 €$
Zinssatz		$5,5 \%$	$7,4 \%$		5%	8%	$2 \frac{1}{2} \%$
Jahreszinsen	$297,25 €$		$539,83 €$	$217,75 €$		$552 €$	

Kapital	$2800 €$	$5400 €$	$4800 €$	$7200 €$			$2800 €$
Zinssatz	$3 \frac{1}{2} \%$		$3,75 \%$	$4,5 \%$	4%	$3 \frac{3}{4} \%$	7%
Zeit	81 Tage	8 Monate		82 Tage	288 Tage	128 Tage	
Zinsen		$96 €$	$55 €$		$108,80 €$	$6,40 €$	$117,60 €$

Kapital	$3600 €$	$6300 €$	$10080 €$	$2160 €$			$2500 €$
Zinssatz	$2 \frac{1}{2} \%$		$3,25 \%$	$4,5 \%$	4%	$3 \frac{1}{4} \%$	6%
Zeit	100 Tage	7 Monate		95 Tage	228 Tage	108 Tage	
Zinsen		$49 €$	$118,30 €$		$220.40 €$	$46.80 €$	$115 €$

Station

Die binomischen Formel (Wiederholung 2)

$(a+b)^{2}=a^{2}+a b+a b+b^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-a b-a b+b^{2}=a^{2}-2 a b+b^{2}$
Schreibt mit Hilfe der 1. oder 2. binomischen Formel als Quadrat.

A	$x^{2}-24 x+144$	H	$x^{2}-1,8 x+0,81$
B	$x^{2}+14 x+49$	I	$x^{2}+6 x+9$
C	$x^{2}+6,4 x+10,24$	J	$x^{2}-2 x y+y^{2}$
D	$x^{2}-3 x+2,25$	K	$2,25 a^{2}-6 a b+4 b^{2}$
E	$x^{2}-1,1 x+0,3025$	L	$4 a^{2}+16 a+$
F	$x^{2}+1,4 x+0,49$	M	$121 a^{2}+198 a x+81 x^{2}$
G	$x^{2}-0,4 x+0,04$	N	$0,16 x^{2}+4 x y+25 y^{2}$

Station

Gleichungen (Wiederholung)

Bestimmt jeweils die Lösungsmenge der Gleichungen.

A
$\frac{x}{2}+\frac{4 x}{5}-\frac{5 x}{6}-\frac{3 x}{10}=2$
B
$\frac{11 x}{12}+\frac{3 x}{4}-\frac{5 x}{6}-\frac{x}{8}=4,25$
C
$\frac{2 x}{3}+\frac{3 x}{4}+\frac{3 x}{8}=\frac{5 x}{12}+5,5$
D
$\frac{3 x}{4}+\frac{2 x}{9}+\frac{7 x}{12}-\frac{5 x}{6}=6,5$
E
$\frac{2 x+5}{9}-\frac{x}{10}=3$
F
$\frac{5 x}{4}-\frac{9 x-8}{7}=0,5$
G $\frac{x}{3}+\frac{5 x-5}{7}=15$
H $\frac{3 x}{4}+\frac{7 x+6}{8}=4$
I $\frac{x}{3}-\frac{7 x-44}{15}=0$
I
J $\frac{2 x+3}{7}-\frac{2 x}{15}=5$

\mathbf{K}	$(x-7) \cdot(x+5)=(x-3)^{2}$
\mathbf{L}	$(x-1)^{2}+(x+3)^{2}=(x-2)^{2}+(x+4)^{2}-2,5 x$
\mathbf{M}	$(x+3)^{2}+(x+2)^{2}-(x+5)^{2}=(x-2)^{2}-12$
\mathbf{N}	$x^{2}+(x+4)^{2}=(x+12) \cdot(x-7)+(x+8) \cdot(x+9)$
\mathbf{O}	$(x+4)^{2}-(x+1)^{2}=(x+7) \cdot 5$
\mathbf{P}	$(x+2)^{2}+(x-4)^{2}=2 \cdot(x+1)^{2}-5 x$
\mathbf{Q}	$(13 x-18)^{2}-(5 x+3)^{2}=(12 x-17)^{2}-88 x$
\mathbf{R}	$7 x^{2}-6 \cdot(x+1)^{2}=(x-4)^{2}+7 x$
\mathbf{S}	$(x-1)^{2}-(x+7) \cdot(x-7)=x^{2}-(x-2)^{2}$
\mathbf{T}	$(x+4)^{2}-(x+2)^{2}=3 \cdot(x+5)$

(3)

A

B

$y_{1}=$
$y_{2}=$
$y_{4}=$

Lineare Funktionen des Typs $y=m \cdot x+n$

Gebt die Funktionsgleichungen der einzelnen Geraden an.

$y_{1}=$
$V_{2}=$
$=$
netzwerk
lernen

B

$$
\begin{aligned}
& y_{1}= \\
& y_{2}=
\end{aligned}
$$

C

$y_{1}=$

Station

n-te Wurzeln

Die Kubikwurzel einer nicht negativen Zahl b ist die positive Zahl a, deren 3. Potenz gleich der Zahl b ist.
Beispiel: $\sqrt[3]{125}=5$, da $5^{3}=125$
Die n-te Wurzel einer nicht negativen Zahl b ist die positive Zahl a, deren n-te Potenz gleich der Zahl b ist.
Beispiel: $\sqrt[5]{243}=3$, da $3^{5}=243$
A Berechnet im Kopf.
$\sqrt[3]{8}$
$\sqrt[3]{64}$
$\sqrt[3]{0,125}$
$\sqrt[3]{1000}$
$\sqrt[3]{512}$
$\sqrt[3]{216}$
$\sqrt[3]{0,001}$
B Berechnet im Kopf.
$\sqrt[4]{16}$
C Zieht teilweise die Wurzel.
$\sqrt[3]{16}=$
$\sqrt[6]{729}$
$\sqrt[3]{250}=$
$\sqrt[6]{64}$
$\sqrt[5]{160}=$
$\sqrt[7]{1}$
$\sqrt[3]{189}=$
$\sqrt[4]{1296}$
$\sqrt[4]{32}=$
$\sqrt[4]{10000}$
$\sqrt[3]{320}=$
$\sqrt[5]{1024}$
$\sqrt[7]{256}=$

Station

Zur Auflockerung: Potenzen und Wurzeln

Durch dieses Spinnennetz müsst inr einen ganz bestimmten Pfad finden. Dabei helfen euch die 27 Aufgaben.
Eure - hoffentlich richtigen - Lösungen zeigen euch den Weg und damit auch ein englisches Sprichwort, das übersetzt heißt: »Ein halbes Brot ist besser als gar keines«.
 $2^{8} \cdot 4^{3}-13384 \Rightarrow 1015 \cdot \sqrt[5]{243} \Rightarrow \sqrt{10471696} \Rightarrow$ $4^{7}-13386 \Rightarrow 2^{2} \cdot 32^{2}-698 \Rightarrow 24 \cdot \sqrt[4]{312900721}$ $2^{11}+\sqrt{224676} \Rightarrow 195 \cdot \sqrt[4]{83521} \Rightarrow$
$6 \cdot \sqrt[3]{141420761} \Rightarrow 162 \cdot \sqrt[7]{19487171}$
$2^{4} \cdot 3^{2} \cdot \sqrt[5]{6436343} \Rightarrow 4^{6}-540 \Rightarrow$
$5 \cdot 9^{3}+2 \cdot 5^{3} \Rightarrow \sqrt[3]{873722816} \Rightarrow$
$2^{5} \cdot \sqrt[4]{28398241} \Rightarrow 3^{4} \cdot \sqrt[5]{6436343} \Rightarrow 7^{4}+789 \Rightarrow$
$14 \cdot \sqrt[4]{2655237841} \Rightarrow \sqrt[3]{726572699}$
$5^{5}-2^{2} \cdot 12^{2} \Rightarrow 13^{3}+2^{2} \cdot 37 \Rightarrow$

$\sqrt[6]{4826809} \Rightarrow 5 \cdot \sqrt[3]{139798359} \Rightarrow 2^{6} \cdot 37$

Zeichne in das Koordinatensystem die Fläche, deren Eckpunkte die angegebenen Koordinaten haben, und berechne den Umfang dieser Fläche: $\mathrm{A}(-4 \mid 2), \mathrm{B}(-3 \mid-3), \mathrm{C}(4 \mid-4), \mathrm{D}(2 \mid 4)$.

$$
\begin{aligned}
& a=\sqrt{5^{2}+1^{2}} \\
& a=\sqrt{26} \\
& a \approx 5,1 \mathrm{~cm} \\
& b=\sqrt{7^{2}+1^{2}} \\
& b=\sqrt{50} \\
& b \approx 7,1 \mathrm{~cm} \\
& c=\sqrt{8^{2}+2^{2}} \\
& c=\sqrt{68} \\
& c \approx 8,2 \mathrm{~cm} \\
& d=\sqrt{6^{2}+2^{2}} \\
& \mathrm{u}=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d} \\
& d=\sqrt{40} \\
& u=5,1+7,1+8,2+6,3 \\
& d \approx 6,3 \mathrm{~cm} \\
& u=26,7 \mathrm{~cm}
\end{aligned}
$$

Station

Sachaufgaben: Der Satz des Pythagoras (3)

A Das Dach einer Garage wird mit neuen Teerbahnen belegt. Wie lang müssen sie sein, wenn der Dachüberstand vorn und hinten 30 cm beträgt?

6,25 m
$I=\sqrt{6,25^{2}+0,6^{2}}$
$I=\sqrt{39,4225}$
$I \approx 6,28$
Gesamtlänge $=6,88 \mathrm{~m}$
Die Teerbahnen müssen $6,88 \mathrm{~m}$ lang sein.

B Als das Space Shuttle mit John Glenn an Bord am 7. 11. 98 zur Landung ansetzte, befand es sich in einer Höhe von 75 m . Nach einem Gleitflug von 420 m setzt es am Anfang der Landebahn auf. Wie weit war das Shuttle von der Landebahn entfernt?

420 m
$w=\sqrt{420^{2}-75^{2}}$
$w=\sqrt{170775}$
$w \approx 413,3$
Das Shuttle war 413 m von der Landebahn entfernt.

Bei eventuellen Mastbrüchen bei Segelschiffen muss die Bruchstelle so liegen, dass die Mastspitze wenig Schaden anrichtet und höchstens in einem Umkreis von $2,20 \mathrm{~m}$ fällt. In welcher Höhe ist die »Sollbruchstelle«

2,20 m

$$
\begin{aligned}
(3,80-x)^{2}-x^{2} & =2,20^{2} \\
14,44-7,6 x+x^{2}-x^{2} & =4,84 \\
14,44-7,6 x & =4,84 \\
-7,6 x & =-9,6 \\
x & \approx 1,26
\end{aligned}
$$

Die Sollbruchstelle liegt in einer Höhe von $1,26 \mathrm{~m}$.

