Download

Verena Behr, Julia Lämmer

Physik an Stationen Spezial Elektrizität

Magnetismus

Downloadauszug aus dem Originaltitel:

zur Vollversion

Physik an Stationen Spezial Elektrizität

Magnetismus

Dieser Download ist ein Auszug aus dem Originaltitel Physik an Stationen Spezial Elektrizität Übungsmaterial zu den Kernthemen des Lehrplans

Über diesen Link gelangen Sie zur entsprechenden Produktseite im Web. http://www.auer-verlag.de/go/dl7155

Materialaufstellung und Hinweise

Magnetismus

Die Schüler erhalten jeweils ein Exemplar des Laufzettels "Magnetismus". Die Stationen 1 bis 10 sind in entsprechender Anzahl zu vervielfältigen und den Schülern bereitzulegen. Als Möglichkeit zur Selbstkontrolle können Lösungsseiten zur Verfügung gestellt werden.

S. 8	Station 1	Wirkung eines Magneten: Würfel, Radiergummi, Büroklammer, Kordel, Stricknadel, Schlüssel, Holzstäbchen, Gummi, Nagel, Stein, Stabmagnet, Kupferdraht, 1-Cent-Münze
S. 9	Station 2	Wirkung der magnetischen Kraft: Papier, Pappe, Glasscheibe, Kupferblech, Eisenblech, Hufeisenmagnet, Büroklammer
S. 10	Station 3	Magnetfeld eines Stabmagneten: Stabmagnet, Wasserschale, Nähnadel, Korkenscheibe
S. 11	Station 4	Darstellung magnetischer Feldlinien: Pappe, Papier, Stabmagnet, Eisenspäne, Sprühkleber
S. 12	Station 5	Ist nur ein Magnet magnetisch?: Stabmagnet, Stricknadel, Holzstab, Gummistab, 10 Büroklammern
S. 13	Station 6	Gegensätze ziehen sich an: 2 Stabmagnete, 2 Experimentierwagen, Eisen, Kupfer
S. 14	Station 7	Unendliche Wirkung?: Stabmagnet, Büroklammer, Lineal, Papier
S. 15	Station 8	Buchstabensalat: –
S. 16	Station 9	Elementarmagnete: Physikbuch, Schülerduden "Physik"
S. 17	Station 10	Magnetfeld der Erde: Physikbuch, Schülerduden "Physik"

Elektrostatik/Ladungstrennung

Die Schüler erhalten jeweils ein Exemplar des Laufzettels "Elektrostatik/Ladungstrennung". Die Stationen 1 bis 9 sind in entsprechender Anzahl zu vervielfältigen und den Schülern bereitzulegen. Als Möglichkeit zur Selbstkontrolle können Lösungsseiten zur Verfügung gestellt werden.

S. 20	Station 1	Ladung durch Reibung: 2 Luftballons mit Schnüren, Kunststofflineal, Tuch, Papierschnipsel, OHP-Folie
S. 22	Station 2	Wie sind alle Stoffe aufgebaut?: Nachschlagewerk, Physikbuch
S. 23	Station 3	Das Elektroskop: Elektroskop, Hartgummistab, Fell (Wollmütze/-schal), Lineal
S. 24	Station 4	Ladungsausgleich: Nachschlagewerk, Physikbuch
S. 25	Station 5	Wie funktioniert ein Polprüfer?: Polprüfer, Kunststofflineal, Wolltuch, Physikbuch
S. 26	Station 6	Wie verhalte ich mich bei Gewitter?: Nachschlagewerk, Physikbuch
S. 27	Station 7	Der Kopierer: Nachschlagewerk, Physikbuch
S. 28	Station 8	Puzzle: evtl. Kärtchen ausschneiden und laminieren, in einer Dose oder Schachtel bereithalten
S. 29	Station 9	Der schräge Wasserstrahl: Hartgummistab, Fell, Wasserleitung mit Hahn

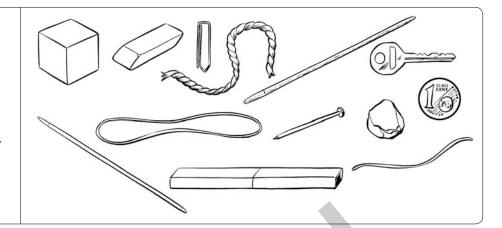
Magnetismus

Magnetismus

Arbeitsanweisung

- 1. Lies zunächst die komplette Anweisung der Station durch, bevor du sie ausführst.
- 2. Verlasse die Station so, wie du sie vorgefunden hast.
- 3. Hake eine bearbeitete Station auf dem Laufzettel ab.
- **4.** Lass dir Zeit. Laufzettel bedeutet nicht, dass du möglichst viel in kurzer Zeit im Dauerlauf abarbeiten sollst.
- **5.** Notiere die Lösungen wie angegeben entweder in deinem Physikordner oder direkt auf dem Arbeitsblatt und hefte die Arbeitsblätter ordentlich ab.
- 6. Arbeitet im Flüsterton.
- 7. Nicht drängeln!

Laufzettel für


Stations- nummer	Titel der Station	erledigt	kontrolliert
1	Wirkung eines Magneten		
2	Wirkung der magnetischen Kraft		
3	Magnetfeld eines Stabmagneten		
4	Darstellung magnetischer Feldlinien		
5	Ist nur ein Magnet magnetisch?		
6	Gegensätze ziehen sich an		
7	Unendliche Wirkung?		
8	Vertiefungsstation 1: Buchstabensalat		
9	Vertiefungsstation 2: Elementarmagnete		
10	Vertiefungsstation 3: Magnetfeld der Erde		

Name:

Wirkung eines Magneten

Material

Würfel, Radiergummi, Büroklammer, Kordel, Stricknadel, Schlüssel, Holzstäbchen, Gummi, Nagel, Stein, Stabmagnet, Kupferdraht, 1-Cent-Münze

Versuchsaufbau/Versuchsdurchführung

Prüfe die Wirkung eines Magneten auf die verschiedenen Gegenstände.

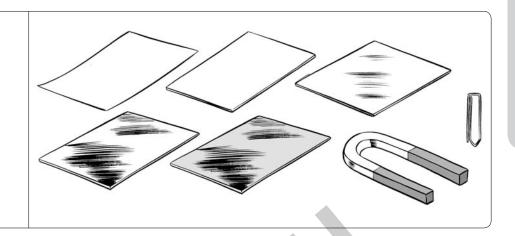
Dokumentation

Trage deine Beobachtungen in der Tabelle ein.

Vom Magneten werden angezogen	Vom Magneten werden nicht angezogen

Auswertung

Aus welchem Material bestehen die Gegenstände, die angezogen werden?


Magnetismus

Wirkung der magnetischen Kraft

Name:

Material

Papier, Pappe, Glasscheibe, Kupferblech, Eisenblech, Hufeisenmagnet, Büroklammer

Versuchsaufbau/Versuchsdurchführung

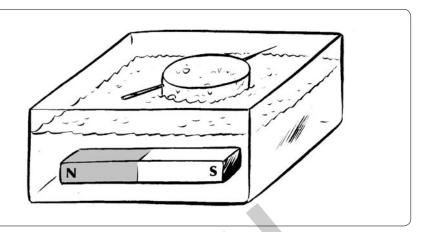
Lege zwischen den Hufeisenmagneten und die Büroklammer verschiedene Materialien und überprüfe, ob die Büroklammer angezogen wird.

Dokumentation

Trage deine Beobachtungen in der Tabelle ein.

Auf die Büroklammer wirkt eine magnetische Kraft bei	Auf die Büroklammer wirkt keine magnetische Kraft bei

Auswertun	g
-----------	---


netzwerk lernen

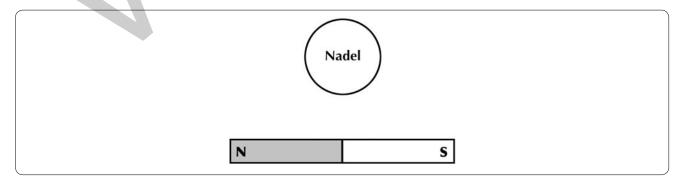
Magnetfeld eines Stabmagneten

Name:

Material

Stabmagnet, Wasserschale, Nähnadel, Korkenscheibe

Versuchsaufbau/Versuchsdurchführung


Lege den Stabmagneten in die Wasserschale. Stecke die Nähnadel durch die Korkenscheibe und setze sie an verschiedenen Stellen auf das Wasser.

Dokumentation

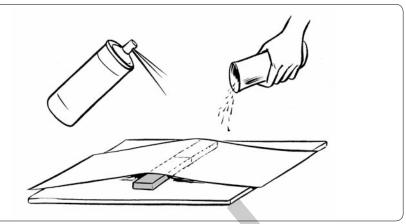
1. Was konntest du bei dem Versuch beobachten? Fülle die Lücken der folgenden Sätze.

Die Nähnadel verhält sich wie eine	Sie bewegt sich auf einer
Linie vom	des Stabmagneten
zu dessen	

2. Zeichne in der folgenden Skizze den Weg (Verlauf) der Nähnadel ein.

Auswertung

Erkläre deine Beobachtungen.

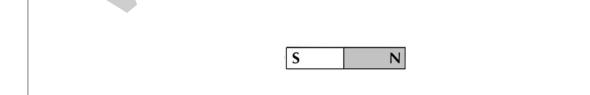


Name:

Darstellung magnetischer Feldlinien

Material

Pappe als Unterlage, 1 Blatt Papier, Stabmagnet, Eisenspäne, Sprühkleber



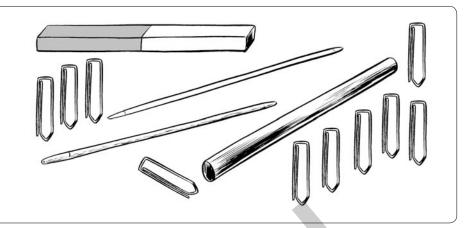
Versuchsaufbau/Versuchsdurchführung

- 1. Lege den Stabmagneten in die Mitte der Pappe.
- 2. Lege auf den Stabmagneten ein Blatt Papier.
- 3. Streue wenige Eisenspäne vorsichtig auf das Papier.
- 4. Schüttle den Sprühkleber und sprühe den Kleber mit etwas Abstand auf die Eisenspäne.
- 5. Warte drei Minuten, bis dein Bild trocken ist.

Dokumentation

- 1. Beschreibe, wie sich die Eisenspäne angeordnet haben.
- 2. Zeichne auf, was du siehst.

3. Wo ist die Anziehungskraft am stärksten? Woran kannst du dies erkennen?



Ist nur ein Magnet magnetisch?

Name:

Material

Stabmagnet, Stricknadel, Holzstab, Gummistab, 10 Büroklammern

Versuchsaufbau/Versuchsdurchführung

- 1. Streiche mit einem Ende des Stabmagneten mehrmals in der gleichen Richtung über die Stricknadel.
- 2. Berühre dann mit der Stricknadel die Büroklammern. Wie viele Büroklammern bleiben hängen?
- 3. Wiederhole den Vorgang mit dem Holzstab und dem Gummistab.

Dokumentation

Notiere deine Beobachtungen in der Tabelle.

	Beobachtung	Anzahl der Büroklammern
Stricknadel		
Holzstab		
Gummistab		

Auswertung

Erkläre deine Beobachtungen.

Name:

Magnetismus

Gegensätze ziehen sich an

Material

2 Stabmagnete, 2 Experimentierwagen, Eisen, Kupfer

Versuchsaufbau/Versuchsdurchführung

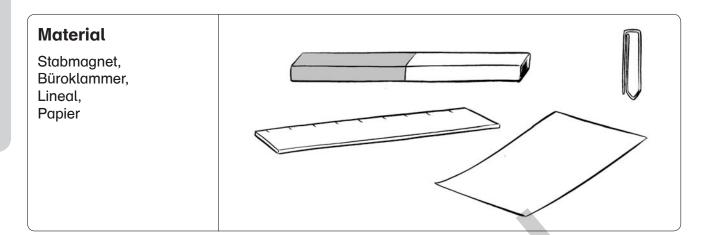
1. Lege die beiden Stabmagnete wie hier vorgegeben auf die Wagen. Markiere den Nordpol rot und den Südpol grün und zeichne ein, was du beobachtest.

S	N	N	S
0	0	0	0

Drehe nun einen Wagen um. Markiere den Nordpol rot und den Südpol grün und zeichne ein, was du beobachtest.

3. Ersetze nun einen Stabmagneten durch ein Stück Eisen und wiederhole das Experiment. Markiere den Nordpol rot und den Südpol grün und zeichne ein, was du beobachtest.

4. Ersetze nun das Eisenstück durch ein Stück Kupfer und wiederhole das Experiment. Markiere den Nordpol rot und den Südpol grün und zeichne ein, was du beobachtest.


Auswertung

Was ist dir bei den einzelnen Experimenten aufgefallen?

- 1. Experiment: _____
- 2. Experiment: _____
- 3. Experiment: ____
- netzwerl lernen

Name:

Unendliche Wirkung?

Versuchsaufbau/Versuchsdurchführung

- 1. Lege den Stabmagneten sowie die Büroklammer auf das Papierfeld.
- 2. Nähere die Büroklammer dem Stabmagneten an und miss den Abstand, ab dem die Büroklammer angezogen wird.
- 3. Nähere die Büroklammer dem Stabmagneten von der Seite aus an und miss auch hier den Abstand, ab dem die Büroklammer angezogen wird.

Dokumentation

Was konntest du bei dem Versuch beobachten? Fülle die Lücken.

Die Büroklammer wird bei einer Entfernung von	cm angezogen. Wenn die Büroklammer
von der Seite an den Stabmagneten geführt wird, betrö	igt die Entfernung cm.

Auswertung

Ergänze den folgenden Satz:					
Der Magnet wirkt					

