Bei diesem Rätsel musst du Felder färben. Welche, das erfährst du, wenn du die 16 Aufgaben richtig löst. Die richtigen Ergebnisse findest du unten im Bild. Färbe die entsprechenden Felder ein.

$$
9,37-(1,53+0,31+0,3 \cdot 13,6)
$$

$$
\begin{aligned}
& 156,91: 1,7-0,31 \cdot 13,4 \Rightarrow 56,2-92,4: 6 \Rightarrow 51,688: 0,56-12 \Rightarrow \\
& 121,89: 5,1-0,49 \cdot 46,7 \Rightarrow 23,4-92,8: 8 \Rightarrow 10,922: 0,43-19 \Rightarrow \\
& \text { 175,787: }(336,74-289,23) \Rightarrow(6,1+4,42): 0,4 \Rightarrow 94,3:(32-27,9) \Rightarrow \\
& 360,354:(332,02-298,96) \Rightarrow(9,3+9,66): 0,8 \Rightarrow 57,6:(21-19,2) \Rightarrow \\
& (5,8+2,3) \cdot(32,5-17,5) \Rightarrow 9,2 \cdot 3,64+2,2 \cdot 1,93 \Rightarrow 5,5 \cdot 7,14+6,9 \cdot 1,85 \Rightarrow
\end{aligned}
$$

Ein Sudoku gefällig?
Fülle das Quadrat vollständig mit den Zahlen 1 bis 9 aus. Dabei dürfen die Zahlen 1 bis 9 in jeder Zeile,
in jeder Spalte in in jedem der kleinen Quadrate nur ein einziges Mal vorkommen.

$\mathbf{1}$			$\mathbf{8}$	$\mathbf{3}$				$\mathbf{2}$
	$\mathbf{2}$				$\mathbf{5}$	$\mathbf{6}$		
		$\mathbf{3}$				$\mathbf{4}$	$\mathbf{5}$	
$\mathbf{6}$			$\mathbf{4}$				$\mathbf{1}$	
$\mathbf{9}$				$\mathbf{5}$				$\mathbf{6}$
	$\mathbf{5}$				$\mathbf{6}$			$\mathbf{3}$
	$\mathbf{1}$	$\mathbf{9}$				$\mathbf{7}$		
		$\mathbf{7}$	$\mathbf{1}$				$\mathbf{8}$	
$\mathbf{5}$				$\mathbf{4}$	$\mathbf{3}$			$\mathbf{9}$

In beiden Rechenquadraten musst du alle Zahlen von 1-9 genau einmal so eintragen, dass die Rechnungen stimmig sind.
 hast. Wenn du dann noch die entsprechenden Buchstabenfolgen einträgst, hast du schnell das englische Sprichwort ermittelt.

45	54	5	12	-5
-8	18	48	$5,3$	$0,5$
3	-4	27	24	-12
2	8	-6	6	4,8

Ein Sudoku gefällig? Fülle das Quadrat vollständig mit den Zanlen 1 bis 9 aus. Dabei dürfen die Zahlen 1 bis 9 in jeder Zeile, in jeder Spalte in in jedem der kleinen Quadrate nur ein einziges Mal vorkommen.	1			6	8				3
		2				5	4		
			3			2	8	5	
	5			4			6	2	
	6				5				8
		8	1			6			4
		1	6	8			7		
			9	5				8	
	8				4	7			9

In beiden Rechenquadraten musst du alle Zahlen von 1-9 genau einmal so eintragen, dass die Rechnung stimmig ist.

Ein Sujiko gefällig? Du musst die Zahlen 1 bis 9 so in die Felder eintragen, dass die Summe der Zahlen, die sich in den vier Feldern um die Kreise befinden, exakt die Zahl innerhalb der Kreise ergibt.

Beispiel:

3

$25-20$

 $21-20$

Rätsel der Woche

Belege die Variablen der 22 Terme mit der angegebenen Zahl und berechne dann den Wert des jeweiligen Terms. Deine Werte zeigen dir den Weg durch das Spinnennetz. Wenn du auf dem Weg alle Buchstaben aneinanderreihst, erhältst du ein englisches Sprichwort.

Gt8 5		$\Rightarrow 1,5$	1,4 - p + 3,6	$\Rightarrow 0,8$	$3 \cdot \mathrm{a}+7,2$
-4	- $2 \mathrm{y}-6,5$	3	$\frac{1}{2} \cdot x+2,5$	$\Rightarrow 4,5$	$\frac{2}{5} \cdot(z+1,5)$
6	$1 \frac{2}{3} \cdot\left(\mathrm{~g}-1 \frac{1}{2}\right)$	$\Rightarrow 2$	$8 \cdot \mathrm{a}-11$	$\Rightarrow 3,5$	$2 \cdot\left(x^{2}-7\right)$
2	$-4 a^{2}+23$	$\Rightarrow 1,4$	$(-c)^{2}+0,6$	$\Rightarrow 0,2$	4: s^{2}
9	a $: \frac{3}{4}-2$	$\Rightarrow 0,9$	$(2,1+x) \cdot 6$	$\Rightarrow 5$	$(b-9) \cdot(-2)$
14	$\frac{4}{7} \cdot x-9$	$\Rightarrow 6,5$	$(\mathrm{d}+1,5): \frac{2}{3}$	4	0,2 $\cdot\left(\mathrm{k}^{2}-3\right)$
8	$(t-6)^{2}: \frac{1}{5}$	7	$(3 n-10) \cdot 2$	4,5	$g:(-0,5)+3$
-2	1,2 $\cdot\left(p^{2}+1\right)$				

Ein Sujiko gefällig? Du musst die Zahlen 1 bis 9 so in die Felder eintragen, dass die Summe der Zahlen, die sich in den vier Feldern um die Kreise befinden, exakt die Zahl innerhallb der Kreise ergibt.

Beispiel:

1	5	7
8	23	-27
8	6	6
3	22	21
	4	

Ein Mini-Sudoku gefällig? Fülle das Schema so aus, dass jede Zeile, jede Spalte und jedes 2×3 er-Feld die Zahlen 1-6 enthält.

		6			
2				4	
	6			1	
5					
3			2		
			5		

Kannst du die Kreise so ausfüllen, dass in jeder Zeile, in jeder Spalte und in den sechs Kreisen, die durch Linien miteinander verbunden sind, die Zahlen 1-6 enthalten sind.

Rätsel der Woche

Name:
Datum:
Klasse: 8

Wenn du wissen willst, welches englische Sprichwort sich hinter den 20 Buchstabenfolgen verbirgt, dann musst du herausfinden, wie der umfangreichste Term lautet, den man ausklammern kann. Deine - hoffentlich richtigen - Ergebnisse liefern dir die Buchstabenfolgen, die du aneinanderketten sollst, um das Sprichwort zu ermitteln.

D. \square^{11}	D $\square^{x^{2}}$	cos ${ }^{2 x y}$	$0^{9 x^{3} y}$	1un ay $^{8 y^{2}}$
$\underbrace{4 x}$	- $e^{12 x^{2} y^{2}}$	$\square^{25 x y}$	$\square{ }^{-15 x^{3}}$	(1) $\sim^{45 x^{2} y}$
$\boldsymbol{a}^{1,1 x y}$	$5^{3} n^{7 x}$	$\underbrace{7 x y}$	EM ${ }^{7}$	41 ${ }^{\frac{3}{7} x y}$
	$5 x(y+2)$	$\int^{5(x+y)}$		$10^{3 x^{2} y}$

Wenn du wissen willst, welches englische Sprichwort sich hinter den 20 Buchstabenfolgen verbirgt, dann musst du die Gleichungen lösen. Deine - hoffentlich richtigen - Ergebnisse liefern dir die Buchstabenfolgen, die du aneinanderketten sollst, um das Sprichwort zu erfahren.

\oiiint^{-12}	$D^{0,5}$			4^{6}
$-2,5$	4	2	-2	
	$\underbrace{-3}$			8
$\underbrace{-5}$	-1	$D \square ®^{3}$	$-5,5$	2,5

$$
\begin{gathered}
(3 x-2)(6 x+7)=18 x^{2}+8,5 \\
(x-6)(x+4)=(x-4)(x+3) \\
(x+4)(x+5)=x^{2}-7 \\
(x+4)(3-x)=6-x^{2} \\
(x-9)(x+4)=x^{2}-11 \\
(3-x)(4-x)=x^{2}-2 \\
(4-x)(7+x)=4-x^{2} \\
(x-5)(x-8)=x^{2}+1 \\
(x+3)(6-x)=-x^{2}-3 \\
(5-x)(x+9)=17-x^{2} \\
(3 x+2)(6 x-3)=18 x^{2}+9 \\
(3 x-2)(5-8 x)=21-24 x^{2} \\
(4 x+3)(3 x-2)=12 x^{2}-2 \\
(7-x)(x+3)=-1-x^{2} \\
(5 x+3)(4 x-2)=20 x^{2}-8 \\
(5-2 x)(3-5 x)=10 x^{2}+139 \\
(3-4 x)(5 x+7)=53,5-20 x^{2} \\
(2+x)(x+3)=x^{2}-4
\end{gathered}
$$

netºnerk $(6 x+1)(8 x+1)=48 x^{2}+8$
leriPOn $(x-6)(x+2)=(x-3)(x+8)-1,5$

zur Vollversion

Löse die Aufgaben zur Stochastik. Dein Ergebnis verrät dir, wohin die Buchstaben der einzelnen Dreierwaben übertragen werden müssen. Deine Lösung stimmt in jedem Fall mit einer der Zahlen in dem großen Schema überein. Wenn du alles richtig machst, ergibt sich ein englischer Spruch, der aussagt, dass "man nur eins von beiden haben kann".

Eine Münze und ein Würfel werden gleichzeitig geworfen. Wie viele verschiedene Ereignisse gibt es?

Wie groß ist die Wahrscheinlichkeit für das Ereignis »ww«? $\frac{3}{5} \bigcirc \mathrm{mw}$ ${ }_{5}^{2}$. ws $\frac{4}{5} \bigcirc$ sw $\frac{1}{5}$ © ss

Wie groß ist die Wahrscheinlichkeit für das Ereignis»ss«?
 Morgen soll zu
40% die Sonne
scheinen, über-
morgen zu 80%.
Wie groß ist
die Wahrscheinlich-
keit, dass an beiden

Morgen soll es zu 60% regnen, übermorgen zu 80 \%. Berechne die Wahrscheinlichkeit, dass an beiden Tagen die Sonne scheint.

Eine Münze wird dreimal nacheinander geworfen. Wie groß ist die Wahrscheinlichkeit für das Ereignis Bild, Zahl, Zahl?

Wie viele dreistellige Zahlen sind mit den Ziffernkarten zu legen? Jede Karte wird nur einmal gelegt.

Wie viele dreistellige Zahlen gibt es, die nur aus den Ziffern 1 bis 9 bestehen?

