Inhalt

Vorbemerkungen 1 4
Lernen an Stationen 1-2 5-9(Hinführung: Satz des Pythagoras)
Lernen an Stationen 3-6 10-17(Zerlegungsbeweise)
Lernen an Stationen 7 18-27
(Beweis durch Scherung)
Lernen an Stationen 8 28-30(Höhensatz des Euklid und Formelsammlung)
Lernen an Stationen 9 31-34
(Aufgaben am rechtwinkligen Dreieck)
Lernen an Stationen 10 35-40
(Pythagorasvereinfachung)
Lernen an Stationen 1141-42(Bastelmodell Pyramide)
Lernen an Stationen 12 43-48
(Flächenumwandlung Rechteck - Quadrat)
Lernen an Stationen 13 49-52
(Wiederholung Flächenberechnung)
Freiarbeit: Karteikarten zum Ausschneiden
Vorbemerkungen 2 53
Bastelvorlagen A und B 54-55
Karteikarten: Satz des Pythagoras 56-80
Klassenarbeiten: Karten zum Ausschneiden
48 Aufgabenkarten und Lösungen 81-96

Der vorliegende Band Lernzirkel: Satz des Pythagoras ist in drei Teile gegliedert:

I.

Lernen an Stationen 1 - 2 (Hinführung: Satz des Pythagoras)
Lernen an Stationen 3 - 6 (Zerlegungsbeweise)
Lernen an Stationen 7 (Beweis durch Scherung)
Lernen an Stationen 8 (Höhensatz des Euklid und Formelsammlung)
Lernen an Stationen 9 - 11 (Anwendungen: Satz des Pythagoras)
Lernen an Stationen 12 (Flächenverwandlung Rechteck - Quadrat)
Lernen an Stationen 13 (Wiederholung: Flächenberechnung)

II.

50 Karteikarten für die Freiarbeit
III.

48 Aufgabenkarten zur schnellen Erstellung von Klassenarbeiten
Die Materialien sollen dazu beitragen, dass Schülerinnen und Schüler mit unterschiedlichen Lernvoraussetzungen und unterschiedlichem Lern- und Arbeitstempo sich durch die freieren Arbeitsformen wie Lernen an Stationen und Freiarbeit individuell mit dem Themengebiet auseinandersetzen können.

Folgende Stationen können zusammen aufgebaut bzw. kombiniert werden:
Station 1 und Station 2
Station 3 - Station 7
Station 8 - Station 13
Je nach Aufgabentyp sollte mit den SchülerInnen festgelegt werden, auf welche Dezimalstelle gerundet werden soll.

Die bemaßten Zeichnungen sind z. T. nicht maßstäblich angelegt. Sie dienen nur der Veranschaulichung.

Der Satz des Pythagoras / Lernen an Stationen 1

An diesem Kachelofen hat der Kaminbauer aus Reststücken Kacheln gesetzt.

Im Maßstab 1: 3 sehen die Kacheln so aus:

Du schaffst es sicherlich, ein paar Fragen zu beantworten:

1. Aus welchen verschiedenen Teilen setzen sich die Kacheln zusammen?
2. Du erkennst überall kleine rechtwinklige Dreiecke. Miss einmal, wie lang die einzelnen Seiten der Dreiecke sind. Wie lang sind sie in Wirklichkeit?
3. Vergleiche den Flächeninhalt des großen Quadrates mit den Flächeninhalten der beiden kleineren Quadrate.

\square
Erkennst du einen Zusammenhang?
4. Bezeichne die Seiten des Dreiecks mit a, b und c. Nenne die längste Seite c.
Da du die Länge der Seiten ausgemessen hast, weißt du auch, wie groß die Flächeninhalte der einzelnen Quadrate sind.

Fällt dir etwas auf?

Aufgabe 1: Der Architekt Buildnix plant auf einem rechteckigen Grundstück von 28,50 m Länge und 36 m Breite ein Wohnhaus ($12,60 \mathrm{~m} \times 8,40 \mathrm{~m}$) mit einer angebauten Garage ($6,80 \mathrm{~m} \times 4,20 \mathrm{~m}$). Wie groß wird die verbleibende Gartenfläche?

Rechnung: 28,5 • $36-12,6 \cdot 8,4-6,8 \cdot 4,2=891,6$ Antwort: Es verbleiben noch $891,6 \mathrm{~m}^{2}$ für den Garten.

Aufgabe 2: Ein Wassergraben hat einen trapezförmigen Querschnitt. Wie groß ist der Flächeninhalt?

Rechnung: [(2,3 + 1,6) : 2] • 1,9 = 3,705
Antwort: Der Flächeninhalt beträgt $3,71 \mathrm{~m}^{2}$.
2,3 m

1,6 m

Aufgabe 3: Malermeister Paintbrush streicht die Fassade eines Hauses. Für jeden gestrichenen Quadratmeter berechnet er 48,50 €.
Wie hoch lautet seine Rechnung für die abgebildete Fassade?
Rechnung: $\{12,2 \cdot 2,8+[(12,2+11): 2] \cdot 1,7+$ $(11 \cdot 1,5): 2-5 \cdot 0,9^{2}-$
$1,2 \cdot 2,1\} \cdot 48,50=2694,66$
Antwort: Seine Rechnung beläuft sich auf 2694,66 €.

Aufgabe 4:

Die Wand eines Treppenhauses ist mit Fliesen belegt. Wie groß ist die Fläche?

Rechnung: 0,8 • (1,2 + 2,3 + 2,7) $=4,96$
Antwort: Der Flächeninhalt beträgt $4,96 \mathrm{~m}^{2}$.

Aufgabe 5:
Für eine Tiffanylampe entwirft die Glaserin Anny McTiff ein sternförmiges Muster. Wie viel dm^{2} farbiges Glas benötigt sie?

Rechnung: [(3•1,5) : 2] • $8=18$
Antwort: Sie benötigt $18 \mathrm{dm}^{2}$ farbiges Glas.

